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Flux-ramp modulation
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Flux-ramp modulation

multiplexing of arrays of SQUIDs

» different flux ramp amplitudes
to encode SQUID cannels

» different V(®) periods

» flux changes from all SQUIDs
are summed

» Fourier transform of output signal
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dc-SQUID Readout

Summary

» transfer function should be linear

problem: flux-to-voltage relation (V)(®ex) is non-linear
- linear input-output only for small signals

possible solutions:

operate SQUID as a null-detector for } )
magnetic flux by using feedback flux-locked loop (FLL)

alternative: use flux ramp modulation - flux signal is transferred into a phase shift

» preamplifier noise should be kept below intrinsic SQUID
problem: impedance of cold SQUID is low compared to room temperature electronics

possible solutions:

FLL with modulation and step-up-transformer: better impedance matching, but bandwidth limiting
two-stage SQUID configuration: flux to flux amplification in the cold
additional positive feedback: larger flux to voltage transfer
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dc-SQUID Readout

» influence of intrinsic 1// noise should be kept as small as possible

problem: slow flux fluctuations dominate often the noise and thus the energy sensitivity

possible solutions:
reverse current biasing: slow in-phase fluctuations are canceled out

flux-ramp modulation: signal is transferred into a higher frequency band

» readout of many SQUIDs with little complexity at low temperatures

problem: individual readout has high wiring complexity, high costs and potentially increases
parasitic heating

possible solutions:

flux-ramp modulation: flux change is transferred to a phase shift in characteristic curve,
coupling of flux ramp can be adjusted at each SQUID and allows
for encoding the SQUIDs - complexity is moved to room temperature.
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rf-SQUIDs

AN

LC resonator (tank circuit)
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4.2 rf-SQUIDs
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4.2 rf-SQUIDs

no screening B =0

\
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Operation and performance of rf-SQUID

tank circuit

quality factor

resonance frequency
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Irf,l

fixed I,

I rf,2

]rf,3

4.2 rf-SQUIDs

I rf,4

fixed L¢
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4.3 SQUID Applications

Overview of applications: Biomagnetism

Biomagnetism and medical applications

Thermometry Thermometry
Displacement sensors

Particle detection

Geophysical applications

Archeology

Non-destructive Evaluation of Materials

Gravity and Motion Sensors Archeology

Metrology I, R, V, T

vV V. vV vV Yy Y vV vV VvYY

Geophysical applications

Particle detection
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4.3 SQUID Applications

Basic SQUID configurations for different applications:
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Different gradiometers

axial gradiometer ,
1st order 2nd order 1st order planar gradiometers

0B, /dy
0B, /0x

9B, /02’ 1 ooy e deanee .,
» gradiometers suppress homogeneous fields ] Fcomp
» gradiometers can be used to construct vectors [ coil
» loops need to be identical o signal
» stability is a very important aspect 001+ col
Source D
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Distance to Pickup Coil 128
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Biomagnetism and Medical Applications

Magnetoencephalography MEG
Magnetocardiography MCG
Magnetooculogram (MOG)
Magnetogastrogram (MGG)
Magnetoneurogram (MNG)
Liver iron susceptometry

Magnetic marker monitoring
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Shielding

magnetically shielded room:

shielding factor

shielding factor vs frequency
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BMSR-2: best magnetically shielded room, which one can enter

» 7 y-metal shields
» 1 aluminum layer (rf-shield)
» additional active shielding
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Magnetoencephalography MEG
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Magnetoencephalography MEG

First measurements of brain currents with a SQUID 1971 at MIT

|

early days for SQUID applications

first recording
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Magnetoencephalography MEG

275 channel system

bandwidth 300 Hz
Typical measurement

] . 4-7 fT/vVHz above 1 Hz
Signal reconstruction

» brain currents have caused the measured fields
» it is not possible to uniquely calculate the brain current distribution from a given field distribution
» this is known as the inverse problem of electromagnetism

» physiological model assumptions are needed to solve this problem
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