

9.2 Tunneling Systems in Glasses

 $\checkmark \Delta \neq 0$ widely distributed

SS 2022

MVCMP-1

 \blacktriangleright Δ_0 also widely distributed

$$\begin{split} P(\Delta,\lambda) \, \mathrm{d}\Delta \, \mathrm{d}\lambda &= P_0 \, \mathrm{d}\Delta \, \mathrm{d}\lambda \\ P(\Delta,\lambda) &\longrightarrow P(E,\Delta_0) \quad \text{with} \quad E^2 &= \Delta^2 + \Delta_0^2 \quad \text{and} \quad \Delta_0 &= \hbar \Omega \mathrm{e}^{-\lambda} \end{split}$$

$$P(E, \Delta_0) d\Delta_0 dE = P(\Delta, \lambda) \left| \frac{\partial \lambda}{\partial \Delta_0} \right| \left| \frac{\partial \Delta}{\partial E} \right| d\Delta_0 dE$$
$$= P_0 \frac{E}{\Delta_0 \sqrt{E^2 - \Delta_0^2}} d\Delta_0 dE$$

density of states

$$D(E) = \int_{\Delta_0^{\min}}^{E} P(\Delta_0, E) \, \mathrm{d}\Delta_0 = P_0 \, \ln \, \frac{2E}{\Delta_0^{\min}}$$

internal energy

$$D(E) \approx D_0 = \text{const.}$$

$$u = \int E D(E) f(E) dE = D_0 (k_B T)^2 \int_0^\infty \frac{x}{e^x + 1} dx$$

Fermi-Dirac distribution
$$f(E) = [\exp (E/k_B T) + 1]^{-1}$$

specific heat

$$C_V = \left(rac{\partial u}{\partial T}
ight)_V = rac{\pi^2}{6} D_0 k_{
m B}{}^2 T ~\propto T$$

total specific heat

 $C_V = AT + BT^3 + C_{\text{Debye}}$

- additional T^3 term \longrightarrow quasi-harmonic modes
- linear term $\sim T^{1.3}$ instead of $\sim T$

 - ---- not all TS can contribute in measuring time

effective density of states

SS 2022

MVCMP-1

measuring time

$$D_{\text{eff}}(E, t_0) = \int_{\tau_{\min}}^{t_0} P(E, \tau) \, \mathrm{d}\tau = \frac{P_0}{2} \ln \frac{4t_0}{\tau_{\min}}$$
minimum relaxation time $P(E, \tau) = -$

$$E(\tau) = \frac{P_0}{2\tau\sqrt{1-\tau_{\min}/ au}}$$

$$\longrightarrow C_V = \frac{\pi^2}{12} P_0 k_B^2 T \ln(4At_0 T^3)$$
 measuring time

heat release of amorphous solids

$$\dot{Q} = rac{\pi^2 k_{
m B}^2}{24} P_0 (T_1^2 - T_0^2) rac{1}{t}$$

Echo experiments

SS 2022

MVCMP-1

coherent regime: $t \ll \tau_1, \tau$

$$\tau_2 \rightarrow \infty$$

two-level approximation:

 $\Psi_+ \qquad E = \hbar \omega$

applied rf field: $F = F_0[\exp(i\omega t) + \exp(-i\omega t)] = 2F_0 \cos(\omega t)$

occupation number difference varies with Rabi frequency

Schrödinger equation:
$$i\hbar \frac{\partial \Psi}{\partial t} = [H_0 + H_S] \Psi = \left[H_0 + p \frac{\Delta_0}{E} F_0 \left(e^{i\omega t} + e^{-i\omega t}\right)\right] \Psi$$

ansatz:
$$\Psi(t) = a_1(t) \Psi_- e^{-i\omega_1 t} + a_2(t) \Psi_+ e^{-i\omega_2 t} \longrightarrow \begin{cases} a_1(t) = \cos(\Omega_R t) \\ a_2(t) = -i\sin(\Omega_R t) \end{cases}$$

 $\Omega_{\rm R} = \frac{1}{\hbar} \frac{\Delta_0}{E} \, \boldsymbol{p} \cdot \boldsymbol{F}_0$

Rabi frequency

polarization vector:

SS 2022

MVCMP-1

$$\boldsymbol{P} = \begin{pmatrix} ab^* + ba^* \\ i(ab^* - ba^*) \\ aa^* - bb^* \end{pmatrix} = \begin{pmatrix} -\sin\left(\Omega_{\mathrm{R}}t\right)\sin\left(\omega t\right) \\ \sin\left(\Omega_{\mathrm{R}}t\right)\cos\left(\omega t\right) \\ \cos\left(\Omega_{\mathrm{R}}t\right) \end{pmatrix} = \begin{pmatrix} S_x \\ S_y \\ S_z \end{pmatrix}$$

Bloch equations:

$$\frac{\mathrm{d}\langle S_x \rangle}{\mathrm{d}t} = -\frac{2}{\hbar} \left(\frac{E}{2} + \frac{\Delta}{E} \, \boldsymbol{p} \cdot \boldsymbol{F} \right) \langle S_y \rangle - \frac{\langle S_x \rangle}{\tau_2}$$
$$\frac{\mathrm{d}\langle S_y \rangle}{\mathrm{d}t} = \frac{2}{\hbar} \left(\frac{E}{2} + \frac{\Delta}{E} \, \boldsymbol{p} \cdot \boldsymbol{F} \right) \langle S_x \rangle - \frac{2}{\hbar} \left(\frac{\Delta_0}{E} \, \boldsymbol{p} \cdot \boldsymbol{F} \right) \langle S_z \rangle - \frac{\langle S_x \rangle}{\tau_2}$$
$$\frac{\mathrm{d}\langle S_z \rangle}{\mathrm{d}t} = \frac{2}{\hbar} \left(\frac{\Delta_0}{E} \, \boldsymbol{p} \cdot \boldsymbol{F} \right) \langle S_y \rangle - \frac{\left[\langle S_z \rangle - S_z^0(\boldsymbol{F}) \right]}{\tau_1}$$

energy relaxation au_1 :

 $T < 1 \text{ K} \longrightarrow \text{one phonon process}$

phase coherence time au_2 :

 τ_1 processes spectral diffusion \leftarrow spin diffusion

Origin of echo

SS 2022

MVCMP-1

SS 2022

MVCMP-1

- sensitivity five orders of magnitude
- non-exponential decay
- what determines the decay: spectral diffusion

interaction between resonant TS and thermally fluctuating TS

spectral diffusion: decay regimes

SS 2022

MVCMP-1

fastest thermal systems

▶ short-time limit (no-flip limit): $t_{12} \ll au_{\min}$

 $A(2t_{12}) = A(0) e^{-(2t_{12}/\tau_2)^2}$ Gaussian decay

long-time limit (multiple-flip limit): $t_{12} \gg au_{\min}$

→ $A(2t_{12}) = A(0) e^{-2t_{12}/\tau_2}$ exponential decay

temperature dependence

short-time limit (no-flip limit):

 $A(2t_{12},T) \propto \tanh\left(\frac{E}{2k_{\rm B}T}\right) e^{-m_0 T^4(\Delta/E)t_{12}^2} = A_0(T) e^{-m(T)(\Delta/E)t_{12}^2}$ $\longrightarrow \tau_2 \propto 1/\sqrt{m(T)} \propto T^{-2}$

► long-time limit (multiple-flip limit): $A(2t_{12}, T) \propto A_0(T) e^{-2t_{12}^2/\tau_2}$ $\longrightarrow \tau_2 \propto T^{-1}$

experimental observation

- transition between regimes is visible at short times and low temperatures.
- with increasing temperature, the Gaussian regime shifts to shorter times

23 May 1911

SS 2022

MVCMP-1

ιΗ				super	condu	icting	@ p	= 1 bo	ır								² He
³ Li 20	⁴ Be 0.03 superconducting @p >> 1 bar non-superconducting											⁵ B 11	⁶ C	⁷ N	⁸ O 0.6	9F	¹⁰ Ne
¹¹ Na	¹² Mg magnetic ordering												¹⁴ Si 8.5	¹⁵ p 18	¹⁶ S 17	¹⁷ Cl	¹⁸ Ar
¹⁹ K	²⁰ Ca 15	²¹ Sc 0.35	²² Ti 0.4	²³ V 5.3	²⁴ Cr	²⁵ Mn	²⁶ Fe 2.0	²⁷ Co	²⁸ Ni	²⁹ Cu	³⁰ Zn 0.9	³¹ Ga 1.09	³² Ge 5.4	³³ As 2.7	³⁴ Se 5.6	³⁵ Br 1.4	³⁶ Kr
³⁷ Rb	³⁸ Sr 4.0	³⁹ γ 2.7	⁴⁰ Zr 0.55	⁴¹ Nb 9.2	⁴² Mo 0.923	⁴³ Tc 7.8	⁴⁴ Ru 0.5	⁴⁵ Rh 320 μK	⁴⁶ Pd	47Ag	⁴⁸ Cd 0.55	⁴⁹ In 3.4	⁵⁰ Sn 3.7	⁵¹ Sb 5.6	⁵² Te 7.4	⁵³ 1.1	⁵⁴ Xe
⁵⁵ Cs	⁵⁶ Ba 5.1	⁵⁷ La 5.9	⁷² Hf 0.16	⁷³ Ta 4.4	⁷⁴ W 0.01	⁷⁵ Re 1.7	⁷⁶ Os 0.65	⁷⁷ lr 0.14	⁷⁸ Pt	⁷⁹ Au	⁸⁰ Hg 4.15	⁸¹ TI 2.4	⁸² Pb 7.2	⁸³ Bi 8.7	⁸⁴ Po	⁸⁵ At	⁸⁶ Pn
⁸⁷ Fr	⁸⁸ Ra	⁸⁹ Ac		⁵⁸ Ce 1.7	⁵⁹ Pr	⁶⁰ Nd	⁶¹ Pm	⁶² Sm	⁶³ Eu	⁶⁴ Gd	⁶⁵ Tb	⁶⁶ Dy	⁶⁷ Ho	⁶⁸ Er	⁶⁹ Tm	⁷⁰ Yb	⁷¹ Lu 0.1
			````	⁹⁰ Th 1.37	⁹¹ Pa 1.3	⁹² U 0.2	⁹³ Np	⁹⁴ Pu	⁹⁵ Am 0.8	⁹⁶ Cm	⁹⁷ Bk	98Cf	99Es	¹⁰⁰ Fm	¹⁰¹ Md	¹⁰² No	¹⁰³ Lw





### **Observations regarding superconductivity**

- small atomic volume appears to favor superconductivity
- metals, semi-metals, semi-conductors (highly doped)
- not superconducting: good conductors Ag, Au, Cu, K, .... and magnetic systems Fe, Ni, Co, ...
- impurities are unimportant, except magnetic impurities
- structural order is unimportant: single crystals, poly crystals, alloys, amorphous solids
- transition temperatures are material dependent and spread over a wide range
- sufficiently large magnetic fields destroy superconductivity

SS 2022

MVCMP-1









#### Superconductors in magnetic fields

Type-I superconductors (pure metals like Pb, Hg, In, Al, ...

 $B < B_{\rm c}$ 

