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7. Conduction Electrons

7.1 Specific heat

a) simple metals

Drude (1900)               Sommerfeld  (1927)                   Bloch (1940)

free electrons gas

free electrons gas:

phonons

electrons:
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Fig. 7.1. Low-temperature specific heat of copper [301]. (a) C plotted linearly
versus temperature. The contribution of the electrons and of the phonons are rep-
resented by dashed and dashed-dotted lines, respectively. The full line reflects the
sum of the two contributions. (b) C/T versus T 2. This plot permits the separation
of the electronic and lattice contributions by graphical means

Since the calculated value of γ is proportional to the electronic mass m, the
fit to the experimental data is often improved by the introduction of an effec-

Table 7.1. Electron density n, Fermi temperature TF, experimental and theoretical
Sommerfeld coefficient γexp and γtheo, and the ratio γexp/γtheo. Apart from the
densities of the alkali metals Li (77 K), Na (5 K), K (5 K), Rb (5 K), and Cs (5 K),
the electron densities in the table were obtained at room temperature. After [302]

Element n TF γexp γtheo γexp/γtheo

(1022 cm−3) (104 K) [mJ (K2mol)−1] [mJ (K2mol)−1]

Li 4.70 5.51 1.75 0.75 2.3

Na 2.65 3.77 1.46 1.08 1.3

K 1.40 2.46 1.92 1.67 1.2

Rb 1.15 2.15 2.42 1.92 1.3

Cs 0.91 1.84 3.22 2.21 1.5

Cu 8.47 8.16 0.67 0.50 1.3

Ag 5.86 6.38 0.65 0.63 1.1

Au 5.90 6.42 0.65 0.63 1.1

Mg 8.61 8.23 1.34 1.00 1.7

Ba 3.15 4.23 2.72 1.96 1.4

Al 18.10 13.60 1.25 0.91 1.4

In 11.50 10.00 1.79 1.21 1.5

Sn 14.80 11.80 1.83 1.37 1.3

Pb 13.20 11.00 2.92 1.50 1.9

► electrons dominate below ∼ 4 K
► very good qualitative agreement
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7.1 Specific Heat

good qualitative agreement for simple metals

for quantitative agreement
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but: transition series metals

example nickel:                                        reason is d-electrons contribute, which are not (completely) free

involved in covalent bond, highly oriented
no spherical Fermi surface 

► d-electrons with large density of state dominate at EF
► d-electrons are localized

7.1 Specific Heat
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b) metal with heavy electrons

examples:    CeCu2Si2 cer electronic configuration  [Xe] 5d1 4f1 6s2

g = Cel /T extrapolated from high T

at low temperatures  T à 0

g not constant below 15 K 

4f electrons are localized at high T
and form a conduction band at low T

effective mass: 

► T > 15 K,  D(E) and m* are constant

► T < 15 K,  C/T increase strongly with decreasing temperature

7.1 Specific Heat
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Heavy fermion systems

7.5 Heavy-Fermion Systems 237

0 50 100 150
T 2 / K2

0.0

0.5

1.0

1.5

2.0

2.5

C
T

−1
/

J
m

ol
−1

K
−2

CeAl3
NpBe13

UCd11

UBe13, CeCu2Si2

UPt3
U2Zn17

Fig. 7.23. Specific heat C/T of dif-
ferent heavy-fermion compounds as
a function of T 2. Substances with
a Sommerfeld coefficient γ = C/T
above the tinted area are consid-
ered to be heavy-fermion systems. For
comparison: this limit corresponds to
γ ≈ 270 γNa [329]

7.5.2 Susceptibility

Besides the enormously high specific heat, heavy-fermion systems also exhibit
a strongly enhanced susceptibility. In ordinary nonmagnetic metals there is
an almost temperature-independent susceptibility, the so-called Pauli suscep-
tibility

χ = µ0µ
2
BD(EF) ∝ n1/3m∗ . (7.43)

However, at high temperatures, heavy-fermion systems exhibit a Curie–Weiss
like behavior that can be attributed to the localized moment of f -electrons. At
temperatures below T ∗, the temperature variation of χ flattens and finally the
susceptibility remains approximately constant. The enhanced, temperature-
independent susceptibility can be interpreted as the Pauli susceptibility of
the heavy quasiparticles.

As an example, the susceptibility of CeAl3 is shown in Fig. 7.24. At high
temperatures, the expected Curie–Weiss behavior of systems with magnetic
moments is found. From these data it follows that all Ce-ions carry a magnetic
moment of 2.56 µB, corresponding roughly to that of free trivalent Ce-ions.3
As shown in the insert of the figure, the susceptibility becomes approximately
constant below 1.5 K and χ ≈ 3.6 × 10−2 cm3 mol−1 is found. This value is
about two orders of magnitude greater than that of free electrons. Just like
the specific heat, the susceptibility (7.43) is proportional to the density of
states and we conclude that the high effective mass of the quasiparticles is
the origin of this unusual behavior.

This conclusion is supported by the clear correlation between γ and χ
displayed in Fig. 7.25. In the range T $ T ∗, the strongly enhanced value
of the magnetic susceptibility and the specific heat of heavy-fermion systems
3 In a quantitative comparison it has to be taken into account that the crystal

field modifies the magnetic moments.

7.2 Electrical Conductivity 209

The specific heat divided by temperature C/T of a CeCu2Si2 crystal in
its normal conducting state is depicted in Fig. 7.3a. Below 20 K, γ is not
constant but rises with decreasing temperature. An extrapolation of the high-
temperature data to T = 0 leads to γ ≈ 30mJ (mol K2)−1. Extrapolating
the low-temperature data shown in the insert results in the astonishingly
high value γ ≈ 1050mJ (mol K2)−1. In Fig. 7.3b, the specific heat of CeAl3
is shown. The very high value γ ≈ 1800mJ (mol K2)−1 is found at 0.35 K.
For CeAlCu4, a Sommerfeld coefficient as high as γ ≈ 2200mJ (mol K2)−1 is
reported [304]. From the relation γ ∝ n1/3m∗

th it follows that the exceptionally
high values of γ are caused by the extremely large effective electron masses.
The reason for this anomaly and further interesting properties of this class
of substances will be discussed in Sect. 7.5 at the end of this chapter after
our discussion of the Kondo effect.
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Fig. 7.3. Specific heat of heavy-fermion systems. (a) Specific heat divided by
temperature C/T of CeCu2Si2 versus T 2. The low-temperature behavior is shown
in the insert in the upper part of the figure with spread scale [305]. (b) C/T of
CeAl3 versus T [306]

7.2 Electrical Conductivity

In this section, we discuss some interesting low-temperature aspects of the
electrical conductivity of metals. Superconductivity will be excluded from
our discussion because we will treat this phenomenon separately in Chap. 10.
To avoid unnecessary conceptual complications we mainly pay attention to
simple metals. Concerning transition metals we only make a very brief remark
since they often stand out due to peculiarities in their physical properties. As
mentioned before, in these metals not only s-electrons but also d-electrons are
present in the conduction band. Although the density of states of d-electrons
at the Fermi energy exceeds that of s-electrons they hardly contribute to

7.1 Specific Heat

► interesting class of solids with strongly correlated electrons

► effective masses m* up to 2000 me  observed

► origin: interaction with localized spins

Wilson ratio:

important: Fermi liquid theory

analogy to 3He reaches even further 

some heavy fermion systems show unconventional superconductivity (S ≠ 0) : UPt3, URu2Si2 …
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metals, no superconductors, no semiconductors

7.2 Electrical Conductivity

Boltzmann equation                  kinetic gas theory

► starting point:  equilibrium distribution without external fields

► with field: stationary non-equilibrium value of

► expand             - in linear order + relaxation ansatz for collisions  

Fermi-Dirac distribution

linearized Boltzmann equation

electric fieldscattering time
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scattering time determined by: 

7.2 Electrical Conductivity

► defect scattering
► phonon scattering
► magnon scattering (in ferromagnets)

► electron-electron scattering  (can be neglected in most cases)
a ) defect scattering

local charge density variations

local strain fields  (less important)

Local charge variations

7.2 Electrical Conductivity 215
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Fig. 7.5. Residual resistivity !de of cop-
per alloyed with elements having a dif-
ferent number of valence electrons. The
resistivity is normalized to an impurity
content of one atomic per cent [308]

Concentration Dependence

Alloying two metals usually leads to an increase of the resistivity because
of the loss of periodicity. Provided that the two components are completely
miscible, as is the case in disordered alloys, the concentration dependence of
the resistivity can be described with Nordheim’s rule [309].

This rule can be made plausible by simple considerations: We start with
the reasonable assumption that for the binary mixture AxB1−x an average
potential with amplitude U0 = xUA + (1 − x)UB exists, where UA and UB

represent the potentials of the atoms A and B, respectively. Deviation from
the average potential is given by (U0 − UA) = (1 − x)(UB − UA) at the sites of
atoms A, and (U0 − UB) = x(UA − UB) at the atoms B. These deviations give
rise to the above-mentioned electron scattering. As a crude approximation,
the probabilities wA and wB for the scattering of the conduction electrons
are given by

wA = (1 − x)2
∣∣∣∣
∫

ψ∗(k) (UB − UA)ψ(k′) d3k′
∣∣∣∣
2

(7.18)

and

wB = x2

∣∣∣∣
∫

ψ∗(k) (UA − UB)ψ(k′) d3k′
∣∣∣∣
2

=
x2

(1 − x)2
wA . (7.19)

From (7.16) and (7.17) it follows that the resistivity can be expressed by
"de ∝ xwA + (1 − x)wB since scattering probability and scattering cross sec-
tion are proportional to each other. Inserting (7.18) and (7.19) leads directly
to Nordheim’s rule

"de ∝ x(1 − x) . (7.20)

This concentration dependence has been confirmed by measurements of
the resistivity of many disordered alloys. In particular, a maximum is ob-
served at x = 0.5, since at this composition the disorder has its maximum.

► Rutherford scattering on ionic cores of impurity atoms
► scattering cross section :

► resistivity

► residual resistance of copper with 1 at% impurities

► agrees well with: 

with different valence electrons configurations 
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Concentration dependence

7.2 Electrical Conductivity

216 7 Conduction Electrons

As an example, we show in Fig. 7.6a the residual resistivity of quenched
copper-gold alloys. In this graph, the residual resistivity of the pure samples
has been subtracted. The overall concentration dependence is well described
by Nordheim’s rule. As shown in Fig. 7.6b, the behavior is drastically changed
after annealing the samples. At gold concentrations around 25% and 50% the
resistivity is considerably reduced because of the formation of the ordered in-
termetallic compounds CuAu and Cu3Au with much lower resistivity.
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Fig. 7.6. (a) Residual resistivity of quenched copper-gold alloys. The full line
represents the relation x(1 − x) predicted by Nordheim’s rule. (b) Residual resis-
tivity of copper-gold alloys after annealing. The dashed line shows the prediction
of Nordheim’s rule [310]

7.2.4 Electron–Phonon Scattering

As mentioned in the introduction to this section, in an electric field the Fermi
sphere is shifted and scattering of electrons from the front to the empty states
in the back takes place thus stabilizing the position of the sphere. Besides
impurities, phonons give rise to such scattering processes (see Fig. 7.7). Since
phonon energies are small compared to the Fermi energy only electrons close
to the Fermi surface can participate in scattering events. This means that
the magnitude |k| of the electronic wave vector is hardly changed. Therefore,
we may put |k| ≈ |k′|, where k and k′ represent the wave vectors before and
after the collision.

In Fig. 7.7 electron–phonon scattering processes are illustrated. The Fermi
sphere is drawn together with the Brillouin zone of a simple cubic lattice. The
shift δk of the spheres is caused by the applied electric field. The blurring
of the Fermi surface due to thermal excitations is indicated by tinted areas.
At high temperatures, the wave number q of the dominant thermal phonons

example: binary mixture                               mixing increases the resistance
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Concentration Dependence

Alloying two metals usually leads to an increase of the resistivity because
of the loss of periodicity. Provided that the two components are completely
miscible, as is the case in disordered alloys, the concentration dependence of
the resistivity can be described with Nordheim’s rule [309].

This rule can be made plausible by simple considerations: We start with
the reasonable assumption that for the binary mixture AxB1−x an average
potential with amplitude U0 = xUA + (1 − x)UB exists, where UA and UB

represent the potentials of the atoms A and B, respectively. Deviation from
the average potential is given by (U0 − UA) = (1 − x)(UB − UA) at the sites of
atoms A, and (U0 − UB) = x(UA − UB) at the atoms B. These deviations give
rise to the above-mentioned electron scattering. As a crude approximation,
the probabilities wA and wB for the scattering of the conduction electrons
are given by

wA = (1 − x)2
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∫

ψ∗(k) (UB − UA)ψ(k′) d3k′
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(7.18)

and
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∫
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From (7.16) and (7.17) it follows that the resistivity can be expressed by
"de ∝ xwA + (1 − x)wB since scattering probability and scattering cross sec-
tion are proportional to each other. Inserting (7.18) and (7.19) leads directly
to Nordheim’s rule

"de ∝ x(1 − x) . (7.20)

This concentration dependence has been confirmed by measurements of
the resistivity of many disordered alloys. In particular, a maximum is ob-
served at x = 0.5, since at this composition the disorder has its maximum.

216 7 Conduction Electrons

As an example, we show in Fig. 7.6a the residual resistivity of quenched
copper-gold alloys. In this graph, the residual resistivity of the pure samples
has been subtracted. The overall concentration dependence is well described
by Nordheim’s rule. As shown in Fig. 7.6b, the behavior is drastically changed
after annealing the samples. At gold concentrations around 25% and 50% the
resistivity is considerably reduced because of the formation of the ordered in-
termetallic compounds CuAu and Cu3Au with much lower resistivity.
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Fig. 7.6. (a) Residual resistivity of quenched copper-gold alloys. The full line
represents the relation x(1 − x) predicted by Nordheim’s rule. (b) Residual resis-
tivity of copper-gold alloys after annealing. The dashed line shows the prediction
of Nordheim’s rule [310]

7.2.4 Electron–Phonon Scattering

As mentioned in the introduction to this section, in an electric field the Fermi
sphere is shifted and scattering of electrons from the front to the empty states
in the back takes place thus stabilizing the position of the sphere. Besides
impurities, phonons give rise to such scattering processes (see Fig. 7.7). Since
phonon energies are small compared to the Fermi energy only electrons close
to the Fermi surface can participate in scattering events. This means that
the magnitude |k| of the electronic wave vector is hardly changed. Therefore,
we may put |k| ≈ |k′|, where k and k′ represent the wave vectors before and
after the collision.

In Fig. 7.7 electron–phonon scattering processes are illustrated. The Fermi
sphere is drawn together with the Brillouin zone of a simple cubic lattice. The
shift δk of the spheres is caused by the applied electric field. The blurring
of the Fermi surface due to thermal excitations is indicated by tinted areas.
At high temperatures, the wave number q of the dominant thermal phonons

Nordheim rule: 

average potential

deviations at atoms A and B:

scattering probability:

Nordheim rule 

resistivity: 

► Cu1-x Aux data agree with Nordheim rule
► tempering of sample            formation of ordered compounds 
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Electron-Phonon scattering

7.2 Electrical Conductivity

only electrons at the Fermi surface can participate 

7.2 Electrical Conductivity 217
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Fig. 7.7. Illustration of electron–phonon scattering processes in a free-electron gas.
The electronic wave vectors are represented by straight arrows, those of the phonons
by wavy arrows. The blurring of the Fermi surface is indicated by tinted areas. The
collision of an electron with (a) a short-wavelength phonon (high temperature), and
with (b) a long-wavelength phonon (low temperature) are shown

is relatively large meaning that the scattering angle Φ is also large. Thus,
one scattering event is sufficient to scatter the electrons from the front to the
back of the Fermi sphere. These scattering events are the main source of
the electric resistance at high temperatures. With decreasing temperature,
the wave number of the dominant phonons becomes smaller, and scattering
events only give rise to small angle changes. Therefore, many scattering events
are necessary to transport electrons along the Fermi surface from the front to
the back of the sphere meaning that phonon scattering becomes less effective.

A thorough quantitative theoretical treatment of the electron–phonon
scattering is rather involved. Therefore, we will discuss the temperature de-
pendence of the electrical conductivity only qualitatively: The mean free
path of free electrons and hence their scattering rate is given by the den-
sity of the colliding phonons and the cross section Σ. Phonons with energy
!ω ≈ kBT are dominant and are the main contributors to the scattering
rate. At low temperatures, i.e., below the Debye temperature Θ, the phonon
density n is proportional to T 2/Θ2. As in the case of phonon–phonon scat-
tering (see Sect. 6.2), the cross section Σ is proportional to the square of the
amplitude e0 of the strain fields caused by the phonon participating in the
collision process. Since, for thermal phonons e2

0 ∝ ω/Θ ∝ T/Θ, we find for
the relaxation rate the proportionality τ−1 ∝ nΣ ∝ T 3/Θ3. However, this
is not the quantity that should be inserted in the Boltzmann equation. The
relaxation time introduced by (7.6) is the time needed by nonequilibrium
electrons to travel from the front to the back of the Fermi sphere. As pointed
out above, at low temperatures a single collision is not sufficient to achieve
this transition. The crucial quantity is the momentum transfer in the direc-

7.2 Electrical Conductivity 217

yk

xk
Φ

k

kδ

q

π
a

k’

yk

xk
Φ

k

k’

kδ

q

π
a

Fig. 7.7. Illustration of electron–phonon scattering processes in a free-electron gas.
The electronic wave vectors are represented by straight arrows, those of the phonons
by wavy arrows. The blurring of the Fermi surface is indicated by tinted areas. The
collision of an electron with (a) a short-wavelength phonon (high temperature), and
with (b) a long-wavelength phonon (low temperature) are shown

is relatively large meaning that the scattering angle Φ is also large. Thus,
one scattering event is sufficient to scatter the electrons from the front to the
back of the Fermi sphere. These scattering events are the main source of
the electric resistance at high temperatures. With decreasing temperature,
the wave number of the dominant phonons becomes smaller, and scattering
events only give rise to small angle changes. Therefore, many scattering events
are necessary to transport electrons along the Fermi surface from the front to
the back of the sphere meaning that phonon scattering becomes less effective.

A thorough quantitative theoretical treatment of the electron–phonon
scattering is rather involved. Therefore, we will discuss the temperature de-
pendence of the electrical conductivity only qualitatively: The mean free
path of free electrons and hence their scattering rate is given by the den-
sity of the colliding phonons and the cross section Σ. Phonons with energy
!ω ≈ kBT are dominant and are the main contributors to the scattering
rate. At low temperatures, i.e., below the Debye temperature Θ, the phonon
density n is proportional to T 2/Θ2. As in the case of phonon–phonon scat-
tering (see Sect. 6.2), the cross section Σ is proportional to the square of the
amplitude e0 of the strain fields caused by the phonon participating in the
collision process. Since, for thermal phonons e2

0 ∝ ω/Θ ∝ T/Θ, we find for
the relaxation rate the proportionality τ−1 ∝ nΣ ∝ T 3/Θ3. However, this
is not the quantity that should be inserted in the Boltzmann equation. The
relaxation time introduced by (7.6) is the time needed by nonequilibrium
electrons to travel from the front to the back of the Fermi sphere. As pointed
out above, at low temperatures a single collision is not sufficient to achieve
this transition. The crucial quantity is the momentum transfer in the direc-

high temperatures low temperatures



SS 2022
MVCMP-1

282

Electron-Phonon scattering

7.2 Electrical Conductivity

a) high temperatures (             )

b) intermediate temperatures  (             )

► cross-section depends on temperature

► number of scattering centers (phonons) reduces

► effectiveness of scattering process goes down

Bloch-Grüneisen law

► reduced plot à material independent
► defect scattering substracted
► good agreement with Bloch-Grüneisen
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Electron magnon scattering

7.2 Electrical Conductivity

spin waves in ferromagnets

ground state single spin excitation
(cost to much energy                  ) 
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dispersion curve: (Terbium) 
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in more detail in Sect. 8.2. The quasiparticles assigned to these excitations
are called magnons. The dispersion curve of spin waves in ferromagnets is
schematically depicted in Fig. 7.9a. The energy gap ∆ma at q = 0 is caused
by the anisotropy of the exchange interaction and depends therefore on the
structural characteristics of the ferromagnet under consideration.
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Fig. 7.9. (a) Illustration of the dispersion relation of spin waves. (b) Electrical
resistivity of terbium as a function of temperature. The temperature-independent
residual resistivity !de has been subtracted. The full line depicts the sum of the
resistance caused by phonon and magnon scattering, the dashed line shows the
calculated magnon contribution [312]

The scattering rate and hence the magnon contribution "ma to the resis-
tivity is proportional to the number of magnons present in the sample. This
number depends on temperature and on the shape of the dispersion curve.
However, the exact shape plays a minor role if the gap is comparable to or
even larger than kBT , because in this case the magnon density nma increases
exponentially with temperature. Thus, we expect for the scattering rate the
relation

τ−1 ∝ nma ∝ e−∆ma/kBT , (7.23)

and for the electrical resistivity

"ma ∝ e−∆ma/kBT . (7.24)

Both magnons and phonons contribute to the resistance of ferromagnets,
i.e., " = "ph + "ma. While the magnon part increases exponentially with
temperature, the phonon part is proportional to T 5 according to (7.22). In
Fig. 7.9b, the temperature variation of the resistivity of the ferromagnet
terbium is shown. The dashed line shows the magnon part, the full line the
sum of the magnon and the phonon contribution, which agrees well with
the experimental data. In the case of terbium, the excitation gap is about
∆ma/kB ≈ 20 K.

anisotropic  exchange 
interaction of spins
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if scattering processes are identical for electrical and thermal transport  

Widemann-Franz law

Thermal conductivity of a free Fermi gas

► Lorenz number depends on temperature
► works well at very low and very high temperatures

Comparison of Electrical and Thermal Conductance
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Comparison of Electrical and Thermal Conductance

cold

Electric Field

Thermal Gradient

hot
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1930   Meissner and Voigt observe a resistance minimum 
for Au and Cu with magnetic impurities 

7.4 Kondo Effect 225

sistivity minimum, i.e., the resistivity rises again at low temperature. As an
example, we show in Fig. 7.15 the resistivity of copper containing 440 ppm Fe.
While the residual resistivity of pure copper stays constant at low temper-
atures, a pronounced minimum is found at about 27 K in the iron-doped
sample. Above that minimum, the temperature variation of the resistivity of
the two samples is nearly identical.

In 1964, it was shown by Kondo that this phenomenon reflects the spin-
dependent scattering of the conduction electrons by the magnetic moments of
impurity atoms [316]. Typical systems that show this effect are simple metals
containing a small amount of a transition metal. With decreasing temperature
the exchange interaction between the conduction electrons and the localized
d-electrons of the impurity atoms becomes more and more significant, result-
ing in a rising electrical resistivity. Together with the T 5-dependent resistiv-
ity due to the electron–phonon interaction this specific scattering mechanism
leads to the above-mentioned minimum. In this section, we want to sketch
the theory describing this effect and show experimental results supporting
these ideas.
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Fig. 7.15. Reduced electrical
resistivity of pure copper and
copper doped with 440 ppm Fe.
!4.2, !273, and !min represent
the resistivity at helium temper-
ature, room temperature, and
at the minimum of the resis-
tance curve, respectively. The
full lines connect the data
points [315]

7.4.1 Localized Magnetic Moments

When small amounts of transition metals or rare-earth elements are dissolved
in ordinary metals their localized magnetic moments are sometimes retained.
Depending on the position of the ion levels with respect to the Fermi energy
of the host, electrons from the ions might join the conduction electrons or,
vice versa, electrons from the conduction band might drop into lower-lying
ionic levels. In this way, the magnetic moment of the ion may be altered
or even quenched. Furthermore, there is a mixing of the d- and f -levels of
the ions with the degenerate continuum of the conduction-band levels. As
a result, the d-electrons of the impurities are less localized and the charge
distribution of the nearby conduction band levels is changed.

► example: Cu + 440 ppm Fe
► resistance minimum at 27 K

1964 explanation by Kondo by spin dependent scattering
of electrons on magnetic impurities

a) Influence of conduction electrons on localized magnetic moments

► d-d interaction            splitting and polarization of d-levels, because of crystal field

► interaction of d-electrons with conduction electrons (s)            hybrid states

example: d-levels of transition metals in simple metals

width determined by  s ↔ d transition rate

golden rule:  

matrix element

Density of states of s-electrons at

s

Interaction of Conduction Electrons and 
Localized Magnetic Moments
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d

crystal field splitting U
(magnetic atoms in a solid)

atomic levels

s-d hybrid states

226 7 Conduction Electrons

The starting point for a theoretical treatment of this phenomenon is usu-
ally the Hamiltonian introduced by Anderson in 1961 [317]. However, since
we are not going to address the full theoretical aspects of this phenomenon
here, we proceed now to discuss only some of the results. In a metallic envi-
ronment, the d-levels of impurity atoms with the energy Ed become polarized
and split by the d–d interaction. As mentioned above, the interaction between
localized moments and conduction electrons leads to a hybridization that re-
sults in broadening of the localized levels. With the help of the golden rule
their width W may be expressed by

W

! =
π

! V2 Ds(Edσ) , (7.29)

where V represents the matrix element for transitions between s- and d-states
and thus reflects the coupling strength. Ds(Edσ) stands for the density of
states of the conduction electrons that have an energy Edσ, which is the
energy of the d-resonances with the spin orientation σ. Because of the rather
small spatial extent of the d-orbitals compared to the s-orbitals, there is an
appreciable on-site Coulomb repulsion at the d-site, i.e., the occupation of a
d-orbital with a second electron (of course, allowed by the Pauli principle if
the spins of the d-electrons are opposite) will ‘cost’ an energy U .

The energy of the localized states can be determined by optical experi-
ments. As indicated in Fig. 7.16, the separation between the two levels Ed+

and Ed− is about 4.8 eV in the case of AgMn. The width of the approximately
Lorentzian lines is about 0.5 eV.

The magnetic moment of ions dissolved in metals is preserved if the inter-
action with conduction electrons is not too strong and hence the broadening
of the resonances much smaller than U . For example, the magnetic moments
of the iron group elements from vanadium to cobalt are retained if they are
dissolved in copper, silver, or gold. However, their magnetic moments vanish
in aluminum since the high concentration of conduction electrons leads to
such a large broadening that the magnetic moments are suppressed [319].

Density of states Dd ( E )
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U

Fig. 7.16. Density of states Dd(E)
of the d-resonances in AgMn. The
level splitting U = 4.8 eV and the
linewidth W = 0.5 eV were measured
optically [318]

AgMn:                      

localized moments remain if interaction
(      ) is not too strong  
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spin-dependent interaction of s electrons with d-electrons

7.4 Kondo Effect 227

As mentioned above, the resonant states also act on the conduction-band
electrons and cause a change of their charge distribution. For instance, sup-
pose that all d-states are occupied with ‘up-spins’. In this case, states with
that orientation would no longer be accessible to s-electrons. Interactions
would only be possible with ‘down-spin’ electrons. Thus, the system behaves
as if there is a spin-dependent interaction between the localized spin S of the
impurity ion at the position R and the spin s of the conduction electron at r.
This fact may be expressed by a Hamiltonian containing only the exchange
term of the form

Hsd = −J S · s δ(r − R) . (7.30)

Without justification, we state that in this so-called s-d model the coupling
factor J is approximately given by J ≈ −V2/U . The minus sign indicates
that the antiparallel spin orientation is favored independent of the sign of V.

Using the Hamiltonian Hsd, the generalized susceptibility of the system
can be calculated. In the free-electron model an analytic expression is ob-
tained with a singularity of the second derivative at q = 2kF, where q is
the wave number of the perturbation. A Fourier transformation gives us
the spatial distribution of the magnetization in the neighborhood of local-
ized moments. As shown in Fig. 7.17, the singularity gives rise to a spatial
variation of the magnetization of the form cos(2kFr)/r3, i.e., to a magneti-

A

C

B

Fig. 7.17. Friedel oscillation of the spin polarization. The localized magnetic mo-
ment A causes an oscillation of the spin polarization of the neighboring conduction
electrons, resulting in an indirect exchange interaction between neighboring impu-
rities. Depending on the distance, a ferro- (B) or antiferromagnetic (C) alignment
of the magnetic moments of the impurities is favored. For clarity, only the spin
polarization due to the magnetic moment A is shown
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localized spins conduction electron

Friedel oscillation

(★)

Interaction of Conduction Electrons and 
Localized Magnetic Moments

position of localized spin
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Interaction of Conduction Electrons and 
Localized Magnetic Moments

Indirect exchange interaction (d-d)   － RKKY interaction Ruderman
Kittel
Kusuya
Yosida
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ferromagnetic interaction

anti-ferromagnetic interaction

MFM measurement using  magnetic 
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(i) first-order perturbation theory

228 7 Conduction Electrons

zation oscillating with a period given by the wave number 2kF and decaying
proportional to 1/r3. This effect is analogous to the so-called Friedel oscil-
lations of the charge density that are seen near a charged impurity [320].
The induced magnetization causes an indirect exchange interaction between
impurities that has antiferromagnetic or ferromagnetic character depending
on the distance. The so-called RKKY interaction is named after Ruderman,
Kittel, Kasuya and Yosida [321] and is of great importance in our discussion
of the properties of magnetic compounds at the end of this chapter.

7.4.2 Electron Scattering by Localized Moments

We now consider the Kondo problem, i.e., we investigate the scattering of
conduction electrons by localized magnetic moments. In principle, both elas-
tic and inelastic scattering contribute to the electrical resistivity, but only
the elastic scattering is relevant to the Kondo effect. To calculate the scat-
tering amplitude we use the so-called N representation in which the Hamil-
tonian Hsd (7.30) has the form

Hsd = −J
∑

kk′

Sz(c+
k′↑ ck↑ − c+

k′↓ ck↓) + S+c+
k′↓ ck↑ + S−c+

k′↑ ck↓ . (7.31)

Here, c+
k and ck depict the creation and annihilation operators that act on

the free electrons with wave vector k. Furthermore, we have replaced the spin
components Sx and Sy by S+ = Sx + iSy and S− = Sx − iSy.

In the first Born approximation, i.e., in first-order perturbation theory,
the amplitude t(1) for the scattering of an s-electron from state |k ↑〉 into
state |k′ ↑〉 is given by

t(1) = 〈k′ ↑ |Hsd|k↑〉 = −J Sz . (7.32)

This scattering mechanism only contributes to a temperature-independent
residual resistance that adds to the contribution of the impurity scattering
discussed in Sect. 7.2.3. Clearly, the experimentally observed minimum of the
resistivity cannot be explained by first-order perturbation theory and so we
have to proceed to second-order calculations.

We need to distinguish between two processes. In the direct process (see
Fig. 7.18a) the incoming electron |k↑〉 is first scattered into the empty inter-
mediate state |k′′σ〉, and subsequently emitted into the final state |k′ ↑〉. Since
fk′′ is the occupation number of the intermediate state, the factor (1 − fk′′)
describes the probability that the state |k′′σ〉 was empty before the scattering
event. In the exchange process (Fig. 7.18b) first an electron in |k′′σ〉 scatters
into |k′σ〉. Subsequently, an electron in |kσ〉 jumps into |k′′σ〉 that is now
empty. These two processes lead to the scattering amplitude

t(2) =
∑

k′′, σ

1
E(k) − E(k′′)

[
(1 − fk′′)〈k′ ↑ |Hsd|k′′σ〉 〈k′′σ|Hsd|k↑〉

+ fk′′ 〈k′′σ|Hsd|k↑〉〈k′ ↑ |Hsd|k′′σ〉
]

. (7.33)
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scattering amplitude
temperature independent constant

(ii) second-order perturbation theory: two possible process 
direct process   (normal order)

exchange process  (reverse order)

direct process exchange process

processes without spin flip
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all first and second order processes


