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3.2 The Landau Fermi-Liquid Theory

energy of one quasi particle is given by the energy of an isolated atom
plus, the interaction with all other atoms

quasi particle states are not eigenstates

How does the distribution function look like?   － does the Fermi distribution still hold?

Yes, as long as the energy levels (states) are well-defined!
but quasi particles aren’t eigen states            transitions occur

broadening of levels 
collision time, lifetime

quasi particle states are well-defined as long as the uncertainty is small 
compared to the thermal broadening 
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3.2 The Landau Fermi-Liquid Theory

this condition can always be fulfilled at sufficiently low temperatures, since   

some numbers: Fermi gas

experimental result

Landau theory is good for                        in case of 3He

Fermi distribution holds
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3.2 The Landau Fermi-Liquid Theory

What is the dispersion relation ?

,      states at EF :  

general expression for states near Fermi level

dispersion of quasi particles

density of states at Fermi level

Fermi gas

Fermi liquid
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3.2 The Landau Fermi-Liquid Theory

Central problem:  Interaction term

► energy of quasi particles depends on the configuration of all quasi particles

► changes when the occupation of states with      differ by            from  the one  at

88 3 Normal-fluid 3He

f(E, T ) =
1

e(E−µ)/kBT + 1
, (3.24)

is also applicable to quasiparticles. Therefore, the complication that E is a
function of f is irrelevant at sufficiently low temperatures. In this temperature
range, we may approximate the dispersion relation of the quasiparticles at
the Fermi surface by

E = EF +
(

∂E

∂p

)

F

(p − pF) . (3.25)

Variables with index F relate to quantities at the Fermi surface. For an ideal
Fermi gas it follows from (3.3) that

(
∂E

∂p

)

F

=
pF

m
= vF . (3.26)

This expression is adopted in the Landau theory, but the mass m is replaced
by the effective mass m∗ of the quasiparticles. Using the modified expression
we may rewrite (3.25) in the form

E = EF +
pF

m∗ (p − pF) . (3.27)

Therefore, the density of states of quasiparticles at the Fermi surface differs
from the expression for an ideal Fermi gas only by the appearance of the
effective mass m∗, i.e.,

D(EF) =
m∗kF

π2!2
=

m∗

π!2
3

√
3n

π
. (3.28)

3.2.2 Interaction Function

As mentioned above, the energy of quasiparticles defined by (3.23) depends on
the configuration of the surrounding quasiparticles. In particular, the energy
E(p, T ) of a quasiparticle changes if the occupation of another state p′ differs
from that at T = 0 by δf(p′). The influence of all other states can be described
by the phenomenological formula1

E(p, T ) = E(p, 0) + 2$k

∫
h(p,p′) δf ′ d3p′ . (3.29)

1 Note that in the theory of Fermi liquids h(p, p′) and δf are usually denoted as
f(p, p′) and δn. We have not used this notation here to avoid possible confusion
with other quantities.
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Phenomenological ansatz  (without spin term)

cannot be derived

interaction term

► corresponds to the scattering amplitude

► like for a Fermi gas only states at the Fermi surface are important

depends only on the angle       between      and       
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3.2 The Landau Fermi-Liquid Theory

Treatment of  interaction term

consider new function: 

expansion in terms of Legendre polynomials

general expression with spin term:

these coefficients can (only) be determined experimentally

spin term
consider new function for spin term: 

expansion in terms of Legendre polynomials

these coefficients can (only) be determined experimentally 
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3.2 The Landau Fermi-Liquid Theory

Application to liquid 3He (not trivial)

(i) effective mass

solid angle segment of Fermi surface

mean value of 

pure 3He:     

experimental results

1% 3He  in 4He:     

normal pressure

30 bar
Landau’s Fermi liquid theory can 
be tested varying pressure and 
3He concentration
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3.2 The Landau Fermi-Liquid Theory

(ii) specific heat

at

E111 = 0 U88V

v3 / p
%s U8eV

v3 ± vf vc U8dV

⌧ 1 U83V

v = v2 =

s
%s
%n

S2

✓
@T

@S

◆

%

U8NV

Cp ⇡ CV UeyV

1

m⇤ =
1

m
⇡ 3 UeRV

1

m⇤ =
1

m
⇡ 6 UekV

1

m⇤ =
1

m
⇡ 2.4 UejV

C / T Ue9V

T ⌧ T ⇤
F Ue8V

T ⇤
F ⇡ 0.5K UeeV

T ! 0 UedV

⌧2 / T�1 Ue3V

9

(ii) sound velocity (first sound)

compare to:

Fermi gas

(iii) magnetic susceptibility

- 2.8

enhancement of susceptibility against Fermi statistics

if exchanged interaction larger by a factor 2                               < -1  and ground state would be
ferromagnetic  
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3.2 The Landau Fermi-Liquid Theory3.3 Zero Sound 91

Table 3.2. Molar volume Vm, experimentally determined values of the Landau
parameters F0, F1 and G0 and effective mass m∗/m of liquid 3He at different
pressures [133]

p (bar) Vm (cm3) F0 F1 G0 m∗/m

0 36.84 9.30 5.39 −2.78 2.80

3 33.95 15.99 6.49 −2.89 3.16

6 32.03 22.49 7.45 −2.93 3.48

9 30.71 29.00 8.31 −2.97 3.77

12 29.71 35.42 9.09 −2.99 4.03

15 28.89 41.73 9.85 −3.01 4.28

18 28.18 48.46 10.60 −3.03 4.53

21 27.55 55.20 11.34 −3.02 4.78

24 27.01 62.16 12.07 −3.02 5.02

27 26.56 69.43 12.79 −3.02 5.26

30 26.17 77.02 13.50 −3.02 5.50

33 25.75 84.79 14.21 −3.02 5.74

3.3 Zero Sound

Sound propagation in liquid 3He at moderate temperatures is similar to the
sound propagation in simple ordinary liquids. At very low temperatures, how-
ever, an anomalous sound propagation is observed. This new type of sound
occurs when the collision time τ of the quasiparticles is long compared to the
period of the sound wave. Because of the relation τ ∝ T−2 this condition can
be fulfilled for sound waves of any frequency at sufficiently low temperature.
At first glance, one would not expect any sound propagation under these
circumstances. In the analogous case of dilute gases, for example, where the
mean free path is large compared to the wavelength of the sound wave, the
damping rises drastically with increasing frequency, and finally sound prop-
agation dies out. This is also true for an ideal Fermi gas. However, at low
temperatures liquid 3He is a Fermi liquid of strongly interacting particles, as
we have discussed in the previous sections. Within the Landau model, one
finds normal hydrodynamic sound propagation for ωτ " 1, but this model
also predicts the existence of sound waves for ωτ # 1.

The force that acts on a quasiparticle originates from the interaction
with the complete surrounding and not just with one other collision partner.
Therefore, density fluctuations that occur in one region are transferred to
other regions without direct collisions between quasiparticles. In a theoretical
treatment of the problem one first derives the equation of motion for the
Fermi liquid from the equations for the number density and the mass current
density. The solution of the equation of motion has poles in the plane at
complex frequencies, which can be identified as collective oscillations. We

Landau Fermi liquid parameters for 3He
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3.3 Sound Propagation in 3He: Zero Sound

normal (first) sound: quasi particles reach local equilibrium by collisions 

frequency of sound wave
zero sound: collision-less propagation of sound 

3He: particle density fluctuations in one region lead to
density fluctuation in neighboring regions 

propagation of sound-like modes              zero sound

9.1 Two-Level Tunneling Systems 289

To shorten the expression we have introduced the derivative of the Fermi–
Dirac distribution f = (eE/kBT + 1)−1 as an abbreviation.4

The dielectric function ε and dielectric susceptibility χ are connected via
the relation ε = ε′ + iε′′ = 1 + χ. Accordingly, the contribution of the defect
systems to the variation δε of the dielectric function can be expressed with
the help of (9.17) and (9.21) by

δε =
−4N

ε0

(
p∆

E

)2 ∂f

∂E

1
1 − iωτ

. (9.22)

Splitting δε into real and imaginary parts yields the variation δε′ of the
dielectric constant, namely,

δε′ =
−4Np2

ε0

(
∆

E

)2 ∂f

∂E

1
1 + (ωτ)2

, (9.23)

and the loss angle

tan δ =
ε′′

ε′
=

−4Np2

ε0ε′

(
∆

E

)2 ∂f

∂E

ωτ

1 + (ωτ)2
. (9.24)

Note that the sign of ∂f/∂E is negative, meaning that δε′ and tan δ are pos-
itive quantities. The frequency-dependent terms describe the so-called Debye
relaxator , well known in the physics of dielectrics. The typical frequency vari-
ation of the dielectric function is illustrated in Fig. 9.2.
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Fig. 9.2. Response of a Debye relaxator versus logarithm of ωτ . (a) Real part with
an inflexion point at ωτ = 1. (b) Imaginary part with a maximum at ωτ = 1

4 The relation ∂(∆N)/∂E = −2N ∂f/∂E holds for an ensemble of two-level sys-
tems. More complicated expressions have to be used if more levels are involved.
The general treatment of the relaxation phenomenon, however, does not depend
on the specific details of the level scheme.
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Debye relaxation process  (transition from hydrodynamic regime to collision-less regime)

systems cannot follow 

real part imaginary
part
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3.3 Sound Propagation in 3He: Zero Sound

► high T :                                      hydrodynamic regime:  first sound    

► low  T :                                      collision-less regime:    zero sound,  longitudinal
transversal
collision-less spin waves

compare with classical gas

mean free path   > wavelength             no sound propagation     

but 3He

► strongly interacting particles
► force on quasiparticle does not stem from direct neighbors, but from all atoms
► density fluctuations can propagate without collisions

► transversal modes are also possible 

General theoretical description of zero sound is rather complicated here only results 

collective modes  with                                zero sound 

2 different sound modes (similar to first sound) and collision-less spin waves
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3.3 Sound Propagation in 3He: Zero Sound

longitudinal sound:

difference of zero and first sound:

intermediate temperatures:

sound attenuation:

limiting cases:

3.3 Zero Sound 93
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Fig. 3.9. Absorption coeffi-
cient α and sound velocity v of
liquid 3He as a function of tem-
perature at 15.4 and 45.5 MHz.
The data agree very well with
the prediction of the Landau
theory. The straight solid lines
represent the proportionalities
T 2 and 1/T 2 at low and high
temperatures, respectively [134]

The transition from normal sound to zero sound can be recognized easily.
The damping on the low-temperature side of the absorption maximum is
independent of frequency, whereas the damping on the high-temperature side
is proportional to ω2, as expected from (3.44) and (3.45). The velocity of zero
sound is about 6 m s−1 higher than the velocity of normal sound, as predicted
by the Landau Fermi-liquid theory.

3.3.2 Transverse Sound Propagation

In classical fluids and gases, the propagation of transverse sound waves is
impossible, because no restoring force exists for transverse atomic displace-
ments. In contrast, in liquid 3He such sound modes are observed. In the
hydrodynamic regime ωτ ! 1 only diffusive shear vibrations are found that
decay rapidly as in ordinary liquids. For ωτ " 1, theory predicts the occur-
rence of transverse sound waves. The rather complicated expression for the
dispersion relation has a real solution for F1 > 6. A look at Table 3.2 shows
that under normal pressure no transverse zero sound is expected to exist
since F1 is too small. Under pressure, however, the parameter F1 increases
and reaches a value of about 15 at the melting point.

The first experimental confirmation of the existence of transverse zero
sound in normal-fluid 3He was obtained by Roach and Ketterson in 1976 [135].
Figure 3.10 shows that the damping of transversal zero sound rises propor-
tional to T 2, as expected from theory. Note that the absolute magnitude of
the damping coefficient is extremely high. Both the prefactor of the sound
absorption and the quasiparticle collision time depend on pressure, leading to

excellent agreement with 
Landau theory
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3.3 Sound Propagation in 3He: Zero Sound

transversal sound:

94 3 Normal-fluid 3He
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Fig. 3.10. Damping of transverse
zero sound as a function of temper-
ature measured at 12 MHz at differ-
ent pressures. The solid lines corre-
spond to a dependence proportional
to T 2 [135]

the observed variation with pressure. In order to measure the sound propa-
gation in the presence of the extremely high damping, the quartz transducers
for generating and detecting the sound waves were separated from each other
by just 25µm.

3.3.3 Collisionless Spin Waves

For spin transport two different regimes are also observed: For ωτ ! 1,
in the hydrodynamic regime, one finds normal spin diffusion. In the Landau
theory, one has the usual expression for the self-diffusion coefficient (3.19), but
with the additional factor (1 + G0/4). This factor accounts for the exchange
interaction resulting in

Ds =
1
3

τD v2
F

(
1 +

1
4G0

)
. (3.46)

In the case where the quasiparticle collision time τD becomes larger than
the precession period of the nuclear spins in a magnetic field, collisionless spin
waves can propagate. Although this was predicted in 1957 by Silin [136], the
first experimental observation was made in 1984 by a group from Ohio in
NMR studies of normal-fluid 3He [137].

In these experiments, the NMR absorption of 3He was measured in a
magnetic field with a linear field gradient. Above 5 mK one obtains a nearly
rectangular absorption band, as expected from the field distribution over the
sample. At lower temperatures it becomes possible to excite standing spin
waves. The absorption maxima related to these spin waves are superposed
on the normal rectangular absorption band as shown in Fig. 3.11. The results
obtained are in very good agreement with the theoretical expectation for a
Fermi liquid.

ordinary liquids  no transversal sound mode

3He
hydrodynamical regime              diffuse shear mode 

real solution for F1 > 6 
impossible at normal pressure: F1 = 5.2
but F1 depends on pressure 

F1 = 5.2 … 15
melting pressure

attenuation: 

experimental results

► narrow T range, very high damping

► sound transducers spaced by 25 µm
► damping depends on pressure
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3.3 Sound Propagation in 3He: Zero Sound

collision-less spin waves: (predicted by Silin 1957)

spin transport

experimental results

► standing spin waves
► linear magnetic field gradient
► rectangular absorption “line”

► maxima of spin wave resonance on top

normal spin diffusion

collision-less spin waves
3.3 Zero Sound 95
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spin waves [137]

3.3.4 Final Remarks

The original formulation of the theory of Fermi liquids has been developed
further and improved over time. In particular, calculations of the transport
properties have been made more precise and spin fluctuations have been in-
cluded. These spin fluctuations are very strong in liquid 3He because of the
competition between antiparallel alignment of the nuclear spins due to the
Fermi statistics and the parallel alignment favored by the exchange interac-
tion. This causes long-lived local ferromagnetic fluctuations.

Investigations of the excitations in normal-fluid 3He by neutron scatter-
ing experiments have contributed to the further development of the Landau
theory. Such experiments are very difficult to perform since they have to be
carried out at very low temperatures and, moreover, the capture cross section
for neutrons by 3He is extremely large. Results of this kind of measurement
are shown in Fig. 3.12. For phonons, one finds an amazingly sharp dispersion
curve up to large wave vectors. This behavior distinguishes liquid 3He clearly
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Fig. 3.12. Dispersion curve of 3He.
The data points were obtained in
different neutron scattering experi-
ments. The line represents a theo-
retical calculation of the zero sound
dispersion with an improved Landau
model. The grey tinted region indi-
cates the quasiparticle continuum ob-
served in neutron-scattering experi-
ments [138–140]

spin transport
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3.3 Sound Propagation in 3He: Zero Sound

Dispersion of zero sound modes:

3.3 Zero Sound 95
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3.3.4 Final Remarks

The original formulation of the theory of Fermi liquids has been developed
further and improved over time. In particular, calculations of the transport
properties have been made more precise and spin fluctuations have been in-
cluded. These spin fluctuations are very strong in liquid 3He because of the
competition between antiparallel alignment of the nuclear spins due to the
Fermi statistics and the parallel alignment favored by the exchange interac-
tion. This causes long-lived local ferromagnetic fluctuations.

Investigations of the excitations in normal-fluid 3He by neutron scatter-
ing experiments have contributed to the further development of the Landau
theory. Such experiments are very difficult to perform since they have to be
carried out at very low temperatures and, moreover, the capture cross section
for neutrons by 3He is extremely large. Results of this kind of measurement
are shown in Fig. 3.12. For phonons, one finds an amazingly sharp dispersion
curve up to large wave vectors. This behavior distinguishes liquid 3He clearly
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Fig. 3.12. Dispersion curve of 3He.
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ments. The line represents a theo-
retical calculation of the zero sound
dispersion with an improved Landau
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experimental determination very difficult

capture cross section very high

ultralow temperatures  T < 20 mK
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3.3 Sound Propagation in 3He: Zero Sound


