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3 ) Normalfluid 3He

First measurements 1949 (from natural abundence)

Landau theory of Fermi liquids 1956-1958 prediction of zero sound and collision-less spin waves

3.1 Ideal Fermi-Gas

Schrödinger equation

ansatz: 

fixed boundary conditions: 

integer values
density of states

even distribution 
in k space density 

with

density k space density per 
volume for 2 spin states 
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3.1 Ideal Fermi-Gas

Fermi-Dirac distribution

chemical potential 

�T ⇡ 0 UR3V

dmg URNV

tan↵ =
dz

dr
=

!2r

g
UkyV

rotvs = 0 UkRV

/ 1

d
UkkV

d0 ⇡ 2� 3³ UkjV

v2s =
2

4⇡2r2
Uk9V

vs(R) = N
h

m4

1

2⇡R
Uk8V

µ = f(E, T ) =
1

2
UkeV

vd =
qE

6⇡⌘r
UkdV

vvr /
1

r
/ 1

Evr
Uk3V

% ! %s UkNV

v ! vs UjyV

z =
%n
%

!2

2g
r UjRV

µ = �kBT

N0
UjkV

v t UjjV

VQ =

✓
hp

2⇡mkBT

◆
= �3

B Uj9V

k

3.1 Ideal Fermi Gas – Comparison with Liquid 3He 79

f(E, T ) =
1

e(E−µ)/kBT + 1
, (3.8)

where µ denotes the chemical potential. At T = 0 all states up to the Fermi
energy EF ≡ µ(T = 0) are occupied, which is determined by the mass m and
the number density n of the fermions, and follows from

n =
N

V
=

∞∫

0

D(k)f(E, T ) dk =
∞∫

0

D(E)f(E, T = 0) dE

=
EF∫

0

D(E) dE =
1

3π2

(
2mEF

!2

)3/2

. (3.9)

With the definition EF = kBTF, the Fermi temperature is given by

TF =
!2

2mkB

(
3π2n

)2/3
. (3.10)

The Fermi temperature of metals is typically of the order of 104 − 105 K
because of the small electron mass and the high charge-carrier density
n ≈ 1023 cm−3. This means that metals at all experimentally accessible tem-
peratures behave in many ways like they where close to absolute zero. In
contrast, a Fermi gas with particles having the mass and the density of liq-
uid 3He has a Fermi temperature of only TF ≈ 4.9 K.

3.1.1 Specific Heat

In calculating the specific heat we have to take into account that the thermal
energy leads to a blurring of the Fermi surface. This means that the distrib-
ution function f(E, T ) drops over the range EF ± kBT . As a starting point,
we consider the internal energy u per unit volume

u =
U

V
=

∞∫

0

D(E) f(E, T )E dE . (3.11)

This integral is not solvable analytically, but it can be approximated at tem-
peratures T $ EF/kB by the expression

u(T ) =
3
5

nkBTF +
π2

4
n

EF
(kBT )2 . (3.12)

Using this result, we find for the specific heat of a gas of free fermions

CV =
(

∂u

∂T

)

V

=
π2

2
n

EF
kB

2T = γ T . (3.13)

At low temperatures T $ TF, we expect therefore a linear temperature de-
pendence of the specific heat of liquid 3He. For the specific heat per mole we
can write
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Fermi Energy

Fermi Temperature

3.1 Ideal Fermi Gas – Comparison with Liquid 3He 79
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3.1 Ideal Fermi-Gas

a) Specific heat

3.1 Ideal Fermi Gas – Comparison with Liquid 3He 79
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80 3 Normal-fluid 3He

CV =
π2R

2

(
T

TF

)
, (3.14)

where R represents the universal gas constant. For liquid 3He the constant
γ/R is of the order of one.

As mentioned at the beginning of this chapter, 3He behaves like a dense
classical gas above 1 K. Below about 0.05 K one indeed finds, to a good ap-
proximation, the expected linear temperature dependence of CV . The corre-
sponding data are shown in Fig. 3.2. Nevertheless, this agreement cannot be
regarded as a quantitative success for the free-fermion description, because
in this model one would expect the linear regime to occur up to significantly
higher temperatures, namely up to T ≈ TF/10. There are two reasons for this
discrepancy: First, the effective mass of 3He atoms in the liquid is larger than
the mass of free 3He atoms, and secondly, there is an additional contribution
to the specific heat of liquid 3He at low temperatures due to spin fluctuations.
We briefly consider the latter contribution in the following.

0 1 2
Temperature T / K

0.0

0.5

1.0

S
pe

ci
fic

he
at

C
/R

3He
Fig. 3.2. Normalized specific heat
C/R of liquid 3He at a molar volume
of 36.82 cm3 mol−1 as a function of
temperature. The dashed line marks
the linear temperature dependence of
CV at very low temperatures [121]

There are two conflicting effects in liquid 3He that influence the alignment
of the nuclear spins, namely the ferromagnetic exchange interaction and the
effect of Fermi statistics. In a system of noninteracting fermions, because of
the exclusion principle, antiparallel spin alignment is energetically favorable.
Fermi statistics prefers this arrangement since nonoccupied states enhance
the total energy of the system. In the case of 3He atoms there is, in addition,
a short-range repulsive force between the atoms having the effect of producing
an exchange interaction. Because of the strongly repulsive potential at short
distances, it is energetically favorable for interacting 3He atoms to occupy a
state with an antisymmetric orbital wave function. As a result, the spins tend
to orient parallel to each other meaning that the parallel spin orientation of
neighboring atoms has a particularly long lifetime. These fluctuating spin do-
mains are called ‘paramagnons’. In a simplified picture, we may assume that

► dense classic gas
► linear region for
► expected at                       

reason:  ► effective mass 
► nuclear spin fluctuations

Fermi statistic ferromagnetic exchange interaction 



SS 2022
MVCMP-1

164

3.1 Ideal Fermi-Gas

large distances (low density)                     Fermi statistic dominates 

short distances (high density)                   strong ferromagnetic exchange

Paramagnon model  (phenomenological description)

idea: fluctuating ferromagnetic regions             size and concentration depend on T

3.1 Ideal Fermi Gas – Comparison with Liquid 3He 81

fluctuating ferromagnetic domains exist in the liquid and that the concentra-
tion of these domains depends on temperature. In this way, they influence the
temperature dependence of entropy and specific heat of liquid 3He. In a phe-
nomenological model, the specific heat of normal-fluid 3He below T < 0.2 K
can be described by the equation

CV = γT + Γ T 3 ln
(

T

Θc

)
. (3.15)

The second term on the right side characterizes the contribution of the spin
fluctuations. This contribution is a correction to the dominant term that is
linear in T and makes up about 20% of the total at 0.1 K. The knowledge
of the precise value of the second term in (3.15) is important in deriving
an accurate value of γ and thus the effective mass of the 3He atoms. At
a molar volume of 36.74 cm3 mol−1 one finds the following values for the
parameters entering the phenomenological relation (3.15): γ/R = 2.78 K−1,
Γ/R = 35.4 K−3, and Θc = 0.46 K.

Figure 3.3 shows data for the specific heat of 3He at different pressures,
and hence at different densities. In this graph, the quantity (γ−CV /T )/(RT 2)
is plotted that would be zero if there were no contribution from nuclear spins.
With increasing density the interaction between the 3He atoms becomes in-
creasingly important and, in turn, the contribution of the spin fluctuations
to the heat capacity rises.
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Fig. 3.3. Contribution of nu-
clear spins to the specific heat of
3He at different molar volumes.
Plotted is (γ − CV /T )/RT 2 on
a logarithmic temperature scale.
The solid lines correspond to fits
using (3.15) [121]

3.1.2 Susceptibility

The temperature dependence of the magnetic susceptibility of liquid 3He is
shown in Fig. 3.4. At high temperatures, 3He behaves like a paramagnetic
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3.1 Ideal Fermi-Gas

b) Magnetic nuclear spin susceptibility

82 3 Normal-fluid 3He
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Fig. 3.4. Magnetic susceptibility χ
of liquid 3He at 0.5 bar as a func-
tion of the temperature normalized
to the low-temperature limit χ0. The
solid line indicates the proportional-
ity χ ∝ 1/T at high temperatures
[122,123]

liquid, meaning that the magnetic susceptibility due to the nuclear spins
varies proportionally to 1/T , as expected from the Curie law . At low temper-
atures, the susceptibility becomes independent of temperature. This behavior
is expected for an ideal Fermi gas. In the free-fermion model the magnetic
susceptibility χ at low temperatures is given by

χ = I(I + 1)µ0 µ2
n g2

n
2
3

n

EF
= β2 D(EF) . (3.16)

Here, µn denotes the nuclear magnetic moment, gn the nuclear g-factor, I the
nuclear spin of the 3He atoms and D(EF) the density of states at the Fermi
energy. Note that the expression for the temperature-independent suscep-
tibility of liquid 3He at very low temperatures has the form of the Pauli
susceptibility of the conduction electrons in metals.

3.1.3 Transport Properties

The transport properties of a classical gas can be well described by means
of the Boltzmann equation in the framework of the kinetic theory of gases.
In this approach, the following expressions are found for the viscosity η, the
self-diffusion coefficient Ds, and the thermal conductivity λ:

η =
1
3

% v & , Ds =
1
3

v & , and Λ =
1
3

CV v & .

Here, & represents the mean free path of the gas atoms. The transport prop-
erties of an ideal Fermi gas can be described to a good approximation by the
same relations, but with the replacement of the thermal velocity v by the
Fermi velocity vF = (!/m)(3π2n)1/3. The mean free path is limited by the
scattering of the fermions, i.e., in our case by the scattering of 3He atoms
among each other. The corresponding mean collision time can by expressed
by τ = vF/&. Because of the exclusion principle the phase space for fermion
scattering is rather limited. To show this, we consider a system of fermions at

► high temperatures:

► low temperatures:
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c) Transport properties

Boltzmann equation              kinetic gas theory

(i) viscosity

84 3 Normal-fluid 3He
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Fig. 3.5. (a) Viscosity of liquid 3He as a function of temperature. With decreasing
temperature viscosity increases drastically [124, 125]. (b) Inverse viscosity of liq-
uid 3He as a function of T 2 at a pressure of 16 bar. Down to the transition into the
superfluid state (sharp increase of η−1) one finds η−1 ∝ T 2 [126]

Self-diffusion Coefficient

Closely related to the viscosity is the self-diffusion coefficient Ds, which
describes the nuclear spin transport. This quantity is usually determined
from nuclear spin echo experiments. For a Fermi gas, the self-diffusion coef-
ficient Ds = η/" is given by

Ds =
1
3
τv2

F . (3.19)

Figure 3.6 shows the result of measurements of Ds. As expected, at low
temperatures the self-diffusion coefficient decreases with increasing tempera-
ture proportional to T−2. At higher temperatures, 3He behaves like a dense
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Fig. 3.6. Self-diffusion coefficient Ds

of liquid 3He as a function of temper-
ature. The dashed line indicates that
the self-diffusion coefficient varies
proportional to T−2 at low temper-
atures [127–129]

► high temperatures:

► low temperatures: 

► 2 mK: like honey!
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from nuclear spin echo experiments. For a Fermi gas, the self-diffusion coef-
ficient Ds = η/" is given by

Ds =
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Figure 3.6 shows the result of measurements of Ds. As expected, at low
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ture proportional to T−2. At higher temperatures, 3He behaves like a dense
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viscosity at ultra-low temperatures

16 bar

phase transition occurring at ~ 2 mK

(ii) Self-diffusion coefficient

diffusion of nuclear spins

► low temperatures:

► high temperatures:   dense classical gas 
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(iii) Thermal conductivity

3.1 Ideal Fermi Gas – Comparison with Liquid 3He 85

classical gas and the self-diffusion coefficient increases with temperature. The
transition from a Fermi gas to a classical gas is marked by a minimum of the
self-diffusion coefficient, which is found at about 0.5 K.

Thermal Conductivity

The thermal conductivity Λ of liquid 3He also exhibits a minimum at about
0.2 K. Experimental data for Λ are shown in Fig. 3.7. Normal-fluid 3He is a
very poor heat conductor. At 1 K, for example, the thermal conductivity is
much lower than that of amorphous materials. We find Λ ≈ 10−4 W cm−1K−1

for 3He, and in comparison, a typical value for glasses at this temperature is
5 × 10−3 W cm−1K−1 (see Sect. 9.5).
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Fig. 3.7. Thermal conductiv-
ity Λ of liquid 3He as a function
of the temperatures at differ-
ent molar volumes. At low tem-
peratures and a molar volume
of 36.68 cm3 mol−1 one finds
roughly a 1/T dependence, as
indicated by the dashed line
[130]

The thermal conductivity of a Fermi gas is given by

Λ =
1
3

CV τ v2
F . (3.20)

Since the specific heat CV varies proportional to T , and τ proportional
to T−2, we expect a 1/T dependence for the thermal conductivity. As shown
in Fig. 3.7, the thermal conductivity data of liquid 3He in the absence of
external pressure (36.68 cm3mol−1) indeed do approach such a dependence
at very low temperatures. With increasing pressure, the contribution of spin
fluctuations causes deviations, as we have also seen in the discussion of the
specific heat.

► low temperatures:

► high temperatures:   dense classical gas

► very small absolute value:                                          at 200 mK

and paramagnon
contributions
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Self-diffusion Coefficient

Closely related to the viscosity is the self-diffusion coefficient Ds, which
describes the nuclear spin transport. This quantity is usually determined
from nuclear spin echo experiments. For a Fermi gas, the self-diffusion coef-
ficient Ds = η/" is given by

Ds =
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τv2
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Figure 3.6 shows the result of measurements of Ds. As expected, at low
temperatures the self-diffusion coefficient decreases with increasing tempera-
ture proportional to T−2. At higher temperatures, 3He behaves like a dense
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p = 0

Is 3He a Fermi gas?

86 3 Normal-fluid 3He

3.1.4 Quantitative Comparison: 3He and Ideal Fermi Gas

We have seen that liquid 3He at low temperatures behaves at least qualita-
tively as a free Fermi gas. We will now look at the quantitative comparison
for a few selected physical properties that we have gathered in Table 3.1.

Table 3.1. Specific heat, sound velocity and magnetic susceptibility of 3He in
comparison to an ideal Fermi gas

3He Fermi Gas Ratio

CV /γ T 2.78 1.00 2.78

v = vF/
√

3 (m s−1) 188 95 1.92

χ/β2 (J m3)−1 3.3 × 1051 3.6 × 1050 9.1

Although the experimental values agree within an order of magnitude with
the expected ones for an ideal Fermi gas, the discrepancies are significant. As
we see in the following section, a better quantitative description is provided
by the Landau Fermi-liquid theory.

3.2 The Landau Fermi-Liquid Theory

As we saw in the preceding section, the properties of liquid 3He below 0.1 K
can qualitatively be described in the Fermi-gas model. Starting from this
simplifying description, Landau developed a model that takes into account
the strong interaction between 3He atoms and that provides a much better
description of the experimental data. An essential aspect of this model is
that, due to the strong interactions, the excitations of individual atoms are
not the proper means to describe the system. Rather, collective excitations of
the atoms must be considered. These elementary excitations can be treated
as quasiparticles with energies and momenta. Within this model, Landau pre-
dicted the so-called zero sound , which was later on experimentally discovered
by Keen, Matthews and Wilks in 1963 [131]. We will discuss this property of
liquid 3He in Sect. 3.3.

3.2.1 Quasiparticle Concept

Landau assumed that the interaction between 3He atoms changes their energy
but not their momentum. This assumption is plausible since the allowed
momenta are determined by the geometrical boundary conditions. Therefore,
we can still write for the momentum of the quasiparticles at the Fermi surface

pF = !
(
3π2n

)1/3
. (3.21)

deviations are not too big, but still significant and in addition differently large for different properties
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3.2 The Landau Fermi-Liquid Theory

Landau Two-Fluid Model 

Can picture superfluid 4He as two interpenetrating fluids: 
     Normal: density ρn(T), velocity vn 
     Superfluid: density ρs(T), velocity vs 
 
      ρ = ρn(T)+ ρs(T) 
 
 
Mass current = ρsvs+ρnvn 
Entropy current =  svn   
    :carried by normal fluid only 
  
 
Second sound (collective mode) =  
       counter-oscillating normal and superfluids

 

free Fermi gas            strongly interacting 3He atoms

collective excitations       quasi particles
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Basic idea

► interaction does change the energy
of particles, but not momentum!

► plausible since momentum states 
are given by boundary conditions

for each state in the Fermi gas  there is a corresponding 
state in the liquid, but with modified energy

Landau theory of Fermi liquids 1956-1958 

prediction of zero sound and collision-less spin waves
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3.2 The Landau Fermi-Liquid Theory

Quasi-particle concept

important: total energy is not given by the sum of 
all individual states (isolated atoms)

Landau’s Gedankenexperiment 

consider that the interaction is switched on slowly
number of states does not change

2 spin states

energy of one quasi particle is defined by the change of energy of the complete system
when a quasi particle is added: 

number of quasi particles 
per volume analog to Fermi gas 

3.2 The Landau Fermi-Liquid Theory 87

Because of the interaction of the 3He atoms the total energy cannot be written
as a simple sum U =

∑
i fi Ei, where fi and Ei represent the occupation

number and the energy of the i-th state. The energy Ei of a level cannot
unambiguously be related to a certain atom, since its value depends on the
occupation of all other states. Therefore, it is not reasonable to consider the
energy of single atoms but the energy of so-called quasiparticles. Without
interaction, the quasiparticles are identical with the atoms. Switching on the
interaction between the atoms ‘slowly’ does not alter the number of levels but
shifts their energy, as illustrated in Fig. 3.8. The number of quasiparticles is
therefore given by an expression analogous to (3.9)

n = 2!k

∫
f d3k =

∫
D(k) f dk , (3.22)

with f denoting the occupation number, which we will discuss later in more
detail. The factor of two accounts for the possible spin orientations. Landau
defined the energy of the quasiparticles by

δu =
∫

E δf d3k , (3.23)

where δu is the change of the total energy caused by a small change δf in the
distribution function. In other words, the energy E is the energy of a single
atom that interacts with all other particles in the system. This implies that
the quasiparticle states are not eigenstates.

Ei
Ei

’

Ideal Fermi Gas Fermi Liquid

Fig. 3.8. Schematic illustration of the
energies Ei of a degenerate ideal Fermi
gas (left) and for a Fermi liquid of in-
teracting particles (right). For simplic-
ity, the levels of the Fermi gas have been
drawn equidistantly

At this point, the question is: what does the distribution function f look
like? Can we use the Fermi–Dirac distribution as before? This is only the
case if the energy states are well defined. Since the quasiparticle states are
not true eigenstates, transitions between levels occur, which in turn lead to
a level broadening according to the uncertainty principle δE ≈ !/τ . Here,
τ represents the lifetime of the considered state. The energy states are well
defined as long as the uncertainty broadening δE is small compared to the
thermal broadening ∆E ≈ kBT . This condition can always be fulfilled at
sufficiently low temperatures since τ ∝ T−2, and therefore δE ∝ T 2. This
means that the distribution function

small change in occupation when one quasi particle is added
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