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2.7 Motion of Ions in He-II

vortex rings

direction of motion

2.5 Excitation Spectrum of Helium II 69
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Fig. 2.48. (a) Velocity of positive and negative ions in helium II as a function
of energy. The solid line has been calculated using (2.101) with κ = h/m4 and
d0 = 2a0 = 2.4 Å. After [105,106]. (b) Schematic illustration of a vortex ring

Here, a0 refers to the radius of the normal-fluid core of the vortex ring and
r to the radius of the torus. The momentum of such a ring is pvr = π"sκr2

and thus its velocity is given by

vvr =
∂E

∂pvr
=

κ

4πr

[
ln

(
2r

a0

)
− 1

4

]
. (2.102)

Neglecting the small logarithmic variation of the bracket with r we find for the
velocity at a given circulation vvr ∝ 1/E in agreement with the experimental
observations shown in Fig. 2.48a.

It is interesting to note that because of the dispersion Evr ∝ √
pvr, the

critical velocity is minimal for the largest possible ring. For a capillary with
diameter d we find the critical velocity

vc,vr =
!

m4d

[
ln

(
d

a0

)
− 1

4

]
. (2.103)

This result explains qualitatively why in flow experiments the observed flow
velocity decreases with increasing capillary diameter (see Sect. 2.1.1).

Flow Experiments

Although it is clear that in a typical flow experiment, the excitation of large
vortex rings is of crucial importance, it is not known which velocity in terms
of the normal and superfluid components is important for this process: vs,
vn or (vn − vs). Good reasons have been proposed for each one of these pos-
sibilities. Despite the fact that theoretical models favor the relative velocity,
the experimental observation of a very weak temperature dependence of the
critical velocity seems to contradict this option.
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Figure 2.41 shows the normal-fluid component as a function of temper-
ature. The data have been obtained in second-sound measurements. At low
temperatures (T < 0.6K) the phonon contribution dominates, and !n ∝ T 4

is observed as expected. At higher temperatures, the normal-fluid component
rises more steeply due to the roton contribution. Above T = 1.2K the data
are identical to the data shown in Sect. 2.2.3. As we have seen, in this range
the temperature dependence can be approximated by !n ∝ (T/Tλ)5.6.
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In 1953 Feynman showed that the excitation spectrum postulated by
Landau can be derived – at least qualitatively – from quantum-mechanical
considerations [36]. In addition, he suggested the investigation of the energy
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2.7 Motion of Ions in He-II

because of                            largest possible vortex is 
has minimal critical velocity 

for capillary with diameter d

16 2 Superfluid 4He – Helium II

2.1.1 Viscosity and Superfluidity

The first indications for the occurrence of superfluidity came from flow mea-
surements through very thin capillaries and narrow slits [31, 32]. Using the
Hagen–Poiseuille law

V̇ =
πr4

8
1
η

∆p

L
, (2.1)

one can conclude from measurements of the flow velocity in narrow capillaries
that the viscosity of helium II is several orders of magnitude lower than that
of helium I. The quantity L denotes the length of the capillary, r the radius,
∆p the pressure drop along the capillary and V̇ the volume rate of helium
transported through it. Some measurements that demonstrate the typical
variation of flow velocity v = V̇ /(πr2) with pressure are shown in Fig. 2.1a.
Besides the extremely low viscosity, two other very remarkable observations
can be made, namely that the flow velocity is nearly independent of the pres-
sure gradient along the capillary, and that the flow velocity increases with
decreasing diameter of the capillary. The temperature dependence of the vis-
cosity deduced from flow measurements through narrow capillaries is shown
in Fig. 2.1b. Above the lambda point, the viscosity is nearly temperature
independent, but it falls to an undetectably low value for T < Tλ.

An important question in this context is whether the viscosity becomes
extremely small but finite or whether it actually becomes zero below the
lambda transition. To answer this question persistent-mass flows have been
generated and monitored [37,38], analogous to persistent-current experiments
with superconductors (see Chap. 10). A torus, containing compressed fine
powder is filled with liquid helium and set into rotation above the lambda
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Fig. 2.1. (a) Flow velocity of helium II through capillaries with different diameter
as a function of the applied pressure [39, 40]. (b) Temperature dependence of the
viscosity of liquid helium as determined from flow experiments with thin capillaries

qualitative agreement with flow experiments in capillaries

Explanation of the experiment by Rayfield and Reif
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Fig. 2.48. (a) Velocity of positive and negative ions in helium II as a function
of energy. The solid line has been calculated using (2.101) with κ = h/m4 and
d0 = 2a0 = 2.4 Å. After [105,106]. (b) Schematic illustration of a vortex ring

Here, a0 refers to the radius of the normal-fluid core of the vortex ring and
r to the radius of the torus. The momentum of such a ring is pvr = π"sκr2

and thus its velocity is given by

vvr =
∂E

∂pvr
=

κ

4πr

[
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Neglecting the small logarithmic variation of the bracket with r we find for the
velocity at a given circulation vvr ∝ 1/E in agreement with the experimental
observations shown in Fig. 2.48a.

It is interesting to note that because of the dispersion Evr ∝ √
pvr, the

critical velocity is minimal for the largest possible ring. For a capillary with
diameter d we find the critical velocity

vc,vr =
!

m4d

[
ln

(
d
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)
− 1

4

]
. (2.103)

This result explains qualitatively why in flow experiments the observed flow
velocity decreases with increasing capillary diameter (see Sect. 2.1.1).

Flow Experiments

Although it is clear that in a typical flow experiment, the excitation of large
vortex rings is of crucial importance, it is not known which velocity in terms
of the normal and superfluid components is important for this process: vs,
vn or (vn − vs). Good reasons have been proposed for each one of these pos-
sibilities. Despite the fact that theoretical models favor the relative velocity,
the experimental observation of a very weak temperature dependence of the
critical velocity seems to contradict this option.

► generation of vortex rings
► ions are captured by vortex ring
► field increases kinetic energy of vortex ring

► theory line with a0 = 1.2 Å

let’s revisit the flow experiments through capillaries

T = 280 mK
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flow experiments to determine the critical velocity 

2.7 Motion of Ions in He-II

how does the critical velocity depend on d ?

70 2 Superfluid 4He – Helium II

Figure 2.49 shows the results of experiments with capillaries of different
diameters. In these measurements, the normal-fluid component was blocked
by a fine powder. The data suggest the relation vc ∝ d−1/4 between the
capillary diameter d and the critical velocity vc, although theoretical consid-
erations would favor vc ∝ d−1.
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Fig. 2.49. Product vcd of the criti-
cal velocity and the capillary diame-
ter plotted as a function of the dia-
meter d [107]

Finally, we mention that for extended samples, networks of vortices –
similar to the dislocation networks in solids – play an important role and
have stimulated extensive theoretical work [108].

2.6 Critical Phenomena Near the Lambda Point

We have seen that many of the properties of 4He exhibit a sudden change at
the lambda point at Tλ = 2.17 K. As mentioned before, the origin of these
changes is the continuous phase transition that occurs in liquid helium. The
investigation of phase transitions is of general importance in physics. Since
helium is a very clean substance consisting of extremely simple constituents,
there has been considerable interest in the investigation of the properties of
liquid helium in the vicinity of the phase transition. The hope was that with
such a well-defined system, fundamental questions can be investigated that
are of relevance in a broader context.

2.6.1 Brief Theoretical Background

The behavior near a critical point is determined by quantities that vanish,
such as an order parameter, or by quantities that diverge, such as specific
heat or susceptibility. Qualitative descriptions of the critical behavior of some
special systems were already given around the turn of the 19th century. Ex-
amples are the transition between liquid and gas [109] and the transition

► potted is: vs
► critical velocity 
► expected
► reason is unknown 
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Properties near Tc are determined by quantities that go to zero like 
the order parameter and quantities that diverge like susceptibilities

2.7 Critical Behaviour of He-II at Tl

Landau theory of continuous phase transitions (1937, 1965)

► idea: expansion of free energy in T in terms of the order parameter

► near Tc one should find the following laws with the reduced temperature 

Landau type theories: − van der Waals theory for liquid – gas transition
− Curie-Weiss theory of ferromagnetism
− Ginzburg-Landau theory of superconductivity
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2.7 Critical Behaviour of He-II at Tl

Problem: fluctuations are not included, but they are increasingly important towards Tc
every Landau-type theory breaks down near Tc

Ginzburg criterion

The condition under which a Landau-type theory holds is that fluctuations 
of the order parameter are small in comparison of the mean value of the order parameter

for He-II:  coherence length  is very small             Ginzburg criterion is ”always” violated 

Despite of the short-comings of the Landau universal theory of phase transitions, 
it was realized that it is possible to assign different physical systems to 
universality classes, characterized by a set of critical exponents

The larger framework is: renormalization group and quantum field theory

different classes are defined by: dimension of system d, 
degrees of freedom of order parameter n, 
interaction length compared to coherence length

Renormalization group 

Kenneth G. Wilson
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2.7 Critical Behaviour of He-II at Tl

a few examples: Ising 3 D
d = 3
n = 1

in this universality class liquid-solid 
transition fall as well

Heisenberg  2 D d = 2
n = 3

at each lattice point each spin 
can point in 3 direction

x−y  3 D d = 3
n = 2He-II

superconductors magnitude and phase of wave
function

each universality class is described by a set of critical exponents 
and are connected by sum rules like 
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2.7 Critical Behaviour of He-II at Tl

Experiments near Tl
a) specific heat

72 2 Superfluid 4He – Helium II

the degrees of freedom of the order parameter and by the length scale of
the interaction with respect to the correlation length. Furthermore, certain
scaling laws for the critical exponents in different universality classes such as
α + 2β + γ = 2 have been suggested. Liquid helium, for example, belongs
to the so-called 3DXYclass, because it has dimensionality d = 3 and two
degrees of freedom for the order parameter (absolute value and phase of the
wave function).

A thorough theoretical foundation for the existence of universality classes
and scaling laws has been given by Wilson in 1971 in the framework of the
renormalization group theory [112]. In this approach the critical exponents
can be calculated. The predicted critical exponents for the lambda transition
are: α = 0.0079 ± 0.003, β = 0.3454 ± 0.0015 and ν = 0.6693 ± 0.001 [113].

In the following, we briefly discuss the behavior of liquid helium near
the lambda transition and we introduce some experiments in which certain
critical exponents of liquid helium have been determined.

2.6.2 Specific Heat

The occurrence of a divergence in the specific heat is characteristic of a
second-order phase transition. The behavior of CV near Tc is almost inde-
pendent of the specific nature of the interaction between particles and is
determined mostly by the presence of fluctuations.

In the following, we shall take a close look at the specific heat of 4He near
the phase transition. Figure 2.50 shows the temperature dependence of the
specific heat of liquid helium as determined in very careful experiments. It can
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Fig. 2.50. Specific heat of liquid 4He as a function of temperature (T − Tλ). The
temperature scale is expanded from left to right each time by almost a factor
of 1000. The solid lines correspond to an empirical approximation [74]
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power law in the vicinity of Tl ?

2.6 Critical Phenomena Near the Lambda Point 73

be seen from this figure that the general shape of the curves are maintained
on more expanded temperature scales.

Empirically, the behavior of CV near the lambda transition can be ap-
proximated by CV ∝ log t, with t = (T/Tλ − 1). By way of illustration, the
specific heat of liquid helium is plotted in Fig. 2.51 on a reduced logarithmic
scale log t = log |T/Tλ − 1|. Over several orders of magnitude one finds, both
below and above the lambda point, a nearly perfect logarithmic dependence.

At first glance, this logarithmic dependence seems to be in contradiction
to the power-law dependence on t that is expected from the theories of phase
transition. According to the results of the renormalization group theory, the
specific heat of liquid helium should vary as

C = B + A
t−α

α

(
1 − D

√
t
)

, (2.104)

where A, B and D are numerical constants. Nevertheless, the logarithmic
behavior seen in the experiment is understandable. Because the critical ex-
ponent α ≈ −0.014 is small, t−α can be expanded as t−α = e−α ln t ≈ 1−α ln t.
Note that the magnitude of the experimentally observed critical exponent is
somewhat larger that the predicted value.

Studies of the specific heat of liquid helium even closer to the lambda
transition are very difficult because effects come into play that seem rather
exotic at first glance. The transition temperature Tλ depends on pressure
and therefore depends on the depth of the liquid helium in the experimental
container. Because of the variation of the hydrostatic pressure in the liquid,
the peak of the specific heat is broadened. In addition, the walls of the con-
tainer can influence the results of the measurement. The first two atomic
layers of helium on the walls are solid because of the strong van der Waals
forces between the wall and the helium atoms. The superfluid component "s

is reduced near the container wall. The length scale that determines the range
over which "s increases from zero at the wall to the value for an infinitely
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Fig. 2.51. Specific heat of 4He as a
function of log |T/Tλ−1|. In this plot
the logarithmic variation of the data
is clearly visible [114,115]
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experimental result   0.013 ± 0.003 

expansion justified because of small a



SS 2022
MVCMP-1

150

2.7 Critical Behaviour of He-II at Tl

measurement on earth

measurement on space shuttle

Higher precision experiments near Tl are needed

Problems: 

gravitation level height dependence
walls of vessel first layer solid and healing 

length diverges with diverges  
near Tl  with
with          

Problems: 
cosmic rays time varying background

(heating of thermometer)

Data shown, after sophisticated analysis
still somewhat noisy

74 2 Superfluid 4He – Helium II

large container is the correlation length ξ, which is often referred to as the
healing length. Size effects become increasingly important near the lambda
transition because the healing length diverges for T → Tλ.

Figure 2.52a shows the results of a measurement in which the specific
heat near the lambda point has been measured with high resolution. The
flattening of the experimental curve at the peak, in comparison to the theo-
retically expected behavior, is clearly visible. This is mainly a result of the
influence of gravity. To study the temperature dependence of the specific
heat of liquid helium free of the gravity of the Earth in a sufficiently large
container, a measurement was performed on a space shuttle mission in 1992.
The result of this measurement is shown in Fig. 2.52b. Systematic deviations
are clearly reduced, but the data are more noisy than the data obtained on
Earth. The larger scatter of the data originated from cosmic rays that caused
a fluctuating heat deposition in the extremely sensitive thermometers in this
experiment.
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Fig. 2.52. Specific heat of 4He very close to the lambda point as a function of tem-
perature measured (a) under normal laboratory conditions on Earth and (b) during
a space shuttle flight in a gravity-free – microgravity – environment [116]

2.6.3 Order Parameter

The real part of the order parameter Φ in helium II is identical with the am-
plitude of the wave function Ψ0 = √

$s. The superfluid component can be de-
termined with high precision by second-sound measurements (see Sect. 2.2.8).
Figure 2.53 shows the result of such a measurement. Clearly, the data fol-
low a power law over several orders of magnitude. From the slope of this
double-logarithmic representation, $s = t0.67 can be derived. Since we expect
$s = t2β , the critical exponent is β = 0.34, in very good agreement with the
predicted value.

74 2 Superfluid 4He – Helium II

large container is the correlation length ξ, which is often referred to as the
healing length. Size effects become increasingly important near the lambda
transition because the healing length diverges for T → Tλ.

Figure 2.52a shows the results of a measurement in which the specific
heat near the lambda point has been measured with high resolution. The
flattening of the experimental curve at the peak, in comparison to the theo-
retically expected behavior, is clearly visible. This is mainly a result of the
influence of gravity. To study the temperature dependence of the specific
heat of liquid helium free of the gravity of the Earth in a sufficiently large
container, a measurement was performed on a space shuttle mission in 1992.
The result of this measurement is shown in Fig. 2.52b. Systematic deviations
are clearly reduced, but the data are more noisy than the data obtained on
Earth. The larger scatter of the data originated from cosmic rays that caused
a fluctuating heat deposition in the extremely sensitive thermometers in this
experiment.
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Fig. 2.52. Specific heat of 4He very close to the lambda point as a function of tem-
perature measured (a) under normal laboratory conditions on Earth and (b) during
a space shuttle flight in a gravity-free – microgravity – environment [116]

2.6.3 Order Parameter

The real part of the order parameter Φ in helium II is identical with the am-
plitude of the wave function Ψ0 = √

$s. The superfluid component can be de-
termined with high precision by second-sound measurements (see Sect. 2.2.8).
Figure 2.53 shows the result of such a measurement. Clearly, the data fol-
low a power law over several orders of magnitude. From the slope of this
double-logarithmic representation, $s = t0.67 can be derived. Since we expect
$s = t2β , the critical exponent is β = 0.34, in very good agreement with the
predicted value.
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comparison between space shuttle data and different calculations of a

discrepancy between data and theory outside error bars: reason unknown
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b) Order parameter
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2.4 Macroscopic Quantum State

F. London repeatedly stressed in different publications that the condensate
is a quantum state on a macroscopic scale [11]. Later, this viewpoint was
extended to the whole superfluid component since it is assumed that the con-
densate and the superfluid component are closely related. As we will see, the
presence of a macroscopic quantum state has consequences for the properties
of helium II. For example, it results in a quantization of circulation and it
enables phenomena analogous to the Josephson effect in superconductors.

2.4.1 Wave Function of the Superfluid Component

The macroscopic quantum state present in helium II can be described by the
wave function

ψ(r) = ψ0 eiϕ(r) , (2.67)

where the phase ϕ(r) is a real-valued function of the position. The ampli-
tude ψ0 is constant or, under certain conditions, just slightly position de-
pendent. Henceforth, we shall omit the position dependence. The absolute
value of the wave function is given by the number of atoms in the superfluid
component per unit volume and can be expressed by

ψ"ψ = |ψ0|2 =
#s

m4
. (2.68)

Here, m4 denotes the mass of 4He atoms. The phase of the macroscopic wave
is related to the velocity of atoms. The momentum p of a helium atom in the
superfluid component can be described with the Schrödinger equation

−i!∇ψ = p ψ . (2.69)

Using (2.67) we find p = !∇ϕ(r) = m4vs and thus

vs =
!
m4

∇ϕ(r) . (2.70)

The velocity of the superfluid component therefore determines the phase
shift of the wave function. The phase is constant for vs = 0, and changes
uniformly for vs = const. The phase of the wave function is a well-defined
quantity within the entire liquid. We can think of particles being ‘rigidly’
connected, though it should be emphasized that this rigid coupling takes
place in momentum space and not in real space. This concept can be verified
by investigating helium II under rotation. Corresponding experiments will be
discussed in the following section.
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large container is the correlation length ξ, which is often referred to as the
healing length. Size effects become increasingly important near the lambda
transition because the healing length diverges for T → Tλ.

Figure 2.52a shows the results of a measurement in which the specific
heat near the lambda point has been measured with high resolution. The
flattening of the experimental curve at the peak, in comparison to the theo-
retically expected behavior, is clearly visible. This is mainly a result of the
influence of gravity. To study the temperature dependence of the specific
heat of liquid helium free of the gravity of the Earth in a sufficiently large
container, a measurement was performed on a space shuttle mission in 1992.
The result of this measurement is shown in Fig. 2.52b. Systematic deviations
are clearly reduced, but the data are more noisy than the data obtained on
Earth. The larger scatter of the data originated from cosmic rays that caused
a fluctuating heat deposition in the extremely sensitive thermometers in this
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Fig. 2.52. Specific heat of 4He very close to the lambda point as a function of tem-
perature measured (a) under normal laboratory conditions on Earth and (b) during
a space shuttle flight in a gravity-free – microgravity – environment [116]

2.6.3 Order Parameter

The real part of the order parameter Φ in helium II is identical with the am-
plitude of the wave function Ψ0 = √

$s. The superfluid component can be de-
termined with high precision by second-sound measurements (see Sect. 2.2.8).
Figure 2.53 shows the result of such a measurement. Clearly, the data fol-
low a power law over several orders of magnitude. From the slope of this
double-logarithmic representation, $s = t0.67 can be derived. Since we expect
$s = t2β , the critical exponent is β = 0.34, in very good agreement with the
predicted value.

amplitude of wave function

expected:
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determined by the simple relation v2 = 2Lν/n for longitudinal resonances.
Here, ν denotes the heater frequency and n the number of half-waves in the
resonator. With this setup, it is possible to generate temperature waves with
frequencies up to 100 kHz. It is remarkable that the velocity of second sound
has been found to be independent of the frequency of the heat pulses up to
this experimental limit.

2.2 Two-Fluid Model

In this section, we will see that the anomalous properties of helium II can be
described phenomenologically with the so-called two-fluid model . The basic
idea of this concept was first suggested in 1938 by Tisza, in order to describe
transport phenomena of helium II. According to this model, helium II be-
haves as if it were a mixture of two completely interpenetrating fluids with
different properties, although in reality this is not the case. To avoid any
misunderstanding, it must be clearly stated at the outset that the two flu-
ids cannot be physically separated; it is not permissible even to regard some
atoms as belonging to the normal fluid and the remainder to the superfluid
component, since all 4He atoms are identical. But accepting these limits of
the physical interpretation, many of the phenomena just described can be
relatively clearly understood by formally expressing the density of helium II
as the sum of a normal-fluid and a superfluid component:

" = "n + "s , (2.2)

where ", "n and "s denote the total, normal-fluid and superfluid densities,
respectively. Both "s and "n depend on temperature, as shown schematically
in Fig. 2.11. At absolute zero, helium II consists entirely of the superfluid
component ("s = " and "n = 0) and at the lambda point it consists entirely
of the normal-fluid component ("s = 0 and "n = "). As we have seen in
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lium II as a function of temperature
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2.6.4 Correlation Length

Finally, we mention a measurement in which the correlation length has been
determined. Near Tλ, the correlation length – or healing length – is expected
to vary as ξ = ξ0 t−ν . This quantity has been determined in an experiment
using unsaturated films in porous media such as Vycor glass. In the vicinity
of a solid wall, the superfluid component is reduced and recovers to the bulk
value over the correlation length. Therefore, the correlation length can be
determined by measurements of the superfluid fraction "s/" as a function
of the film height. The results of such measurements for helium films on
different materials are shown in Fig. 2.54. From the data, ν = 0.63 and
ξ0 = 2.8 ± 0.5 Å has been deduced. Again, the critical exponent agrees well
with the theoretical prediction. The value of ξ0 is slightly higher than found
from other measurements, but is still in fair agreement.
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duced temperature t = 1 − T/Tλ [118]
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c) Healing length

again, second sound measurements
and measurements on thin films
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2.6.4 Correlation Length

Finally, we mention a measurement in which the correlation length has been
determined. Near Tλ, the correlation length – or healing length – is expected
to vary as ξ = ξ0 t−ν . This quantity has been determined in an experiment
using unsaturated films in porous media such as Vycor glass. In the vicinity
of a solid wall, the superfluid component is reduced and recovers to the bulk
value over the correlation length. Therefore, the correlation length can be
determined by measurements of the superfluid fraction "s/" as a function
of the film height. The results of such measurements for helium films on
different materials are shown in Fig. 2.54. From the data, ν = 0.63 and
ξ0 = 2.8 ± 0.5 Å has been deduced. Again, the critical exponent agrees well
with the theoretical prediction. The value of ξ0 is slightly higher than found
from other measurements, but is still in fair agreement.
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2.6.4 Correlation Length

Finally, we mention a measurement in which the correlation length has been
determined. Near Tλ, the correlation length – or healing length – is expected
to vary as ξ = ξ0 t−ν . This quantity has been determined in an experiment
using unsaturated films in porous media such as Vycor glass. In the vicinity
of a solid wall, the superfluid component is reduced and recovers to the bulk
value over the correlation length. Therefore, the correlation length can be
determined by measurements of the superfluid fraction "s/" as a function
of the film height. The results of such measurements for helium films on
different materials are shown in Fig. 2.54. From the data, ν = 0.63 and
ξ0 = 2.8 ± 0.5 Å has been deduced. Again, the critical exponent agrees well
with the theoretical prediction. The value of ξ0 is slightly higher than found
from other measurements, but is still in fair agreement.
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2.6.4 Correlation Length

Finally, we mention a measurement in which the correlation length has been
determined. Near Tλ, the correlation length – or healing length – is expected
to vary as ξ = ξ0 t−ν . This quantity has been determined in an experiment
using unsaturated films in porous media such as Vycor glass. In the vicinity
of a solid wall, the superfluid component is reduced and recovers to the bulk
value over the correlation length. Therefore, the correlation length can be
determined by measurements of the superfluid fraction "s/" as a function
of the film height. The results of such measurements for helium films on
different materials are shown in Fig. 2.54. From the data, ν = 0.63 and
ξ0 = 2.8 ± 0.5 Å has been deduced. Again, the critical exponent agrees well
with the theoretical prediction. The value of ξ0 is slightly higher than found
from other measurements, but is still in fair agreement.
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2.6.4 Correlation Length

Finally, we mention a measurement in which the correlation length has been
determined. Near Tλ, the correlation length – or healing length – is expected
to vary as ξ = ξ0 t−ν . This quantity has been determined in an experiment
using unsaturated films in porous media such as Vycor glass. In the vicinity
of a solid wall, the superfluid component is reduced and recovers to the bulk
value over the correlation length. Therefore, the correlation length can be
determined by measurements of the superfluid fraction "s/" as a function
of the film height. The results of such measurements for helium films on
different materials are shown in Fig. 2.54. From the data, ν = 0.63 and
ξ0 = 2.8 ± 0.5 Å has been deduced. Again, the critical exponent agrees well
with the theoretical prediction. The value of ξ0 is slightly higher than found
from other measurements, but is still in fair agreement.

10-4 10-3 10-2 10-1 100

t = 1 − T / Tλ

100

101

102

103

ξ/
Å

He II

Fig. 2.54. Healing length versus re-
duced temperature t = 1 − T/Tλ [118]
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2.6.4 Correlation Length

Finally, we mention a measurement in which the correlation length has been
determined. Near Tλ, the correlation length – or healing length – is expected
to vary as ξ = ξ0 t−ν . This quantity has been determined in an experiment
using unsaturated films in porous media such as Vycor glass. In the vicinity
of a solid wall, the superfluid component is reduced and recovers to the bulk
value over the correlation length. Therefore, the correlation length can be
determined by measurements of the superfluid fraction "s/" as a function
of the film height. The results of such measurements for helium films on
different materials are shown in Fig. 2.54. From the data, ν = 0.63 and
ξ0 = 2.8 ± 0.5 Å has been deduced. Again, the critical exponent agrees well
with the theoretical prediction. The value of ξ0 is slightly higher than found
from other measurements, but is still in fair agreement.

10-4 10-3 10-2 10-1 100

t = 1 − T / Tλ

100

101

102

103

ξ/
Å

He II

Fig. 2.54. Healing length versus re-
duced temperature t = 1 − T/Tλ [118]

with

excellent agreement

d

second sound vanishes 
for     > d


