Experimental discovery of quantization of circulation

vibrating wire excited by current pules (Joe Vinen 1961)

I(w) transversal modes £ two circular polarized modes
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What has this to do with the rotation of bulk helium in a simply connected region?

=== vortices may occur with normal fluid core

=) resulting in a multiply connected region

3 line of constant flow
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with and classical hydrodynamics one finds
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Energy of a vortex % kinetic energy / volume
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E, = / 952 S 2mr dr energy / length

ao : radius of vortex core

b :radius of vessel or V- distance to next vortex
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E, = QZ In <_) X /{2 x n2 mmm) Vvortex formation with n=1is preferred
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N vortices
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Why is not a large vortex forming? vs(R) = N— ——

m* 2R
mmm)  splitting up in many small vortices
prohibits large kinetic energy in core
of vortex near the axis of rotation
(velocity at the edge of vessel is given)

: N o< R? if evenly distributed
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At what velocity vortices are formed ?

critical angular velocity

\
o

angular momentum

comment:

concept of critical velocity
will be discussed in
section 2.6

Experimental observation of vortices

>

v vy VvVy

meniscus is rotating vessels
damping of second sound
electrometer experiments
exploding electron bubbles

decorating with hydrogen ice particles

113



Experimental observation of vortices
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5mm
o source — helium ionized — electrons form bubbles
bubbles are captured by vortex lines via Magnus force
E field is pulling bubbles alongside of vortex line to surface

measurement of charge — is proportional to number vortex lines

vV v . v.VvYYyYy

uniform acceleration over 10 h to 10 rot/min
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Experimental observation of vortices

. ® - =1
glass fiber ® ., o :._:
fluorescence a - 1
// screen
oV
- 4 .Q .....
- 2
T =100 mK - .. e e
£ =25 mm b f _—
3 ... 8 rot/min -
° = Q. .
.0 ! o . .‘.‘...
Wl g k
: | —— e —

3H source (e7)

»
»

) 2.cm o0 - ..'_.
i e 2
' N h N

QEJ

115



Experimental observation of vortices

Abrikosov lattice —— Type 2 superconductor
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Experimental observation of vortices
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Josephson Effects Schrodinger Eq.

i = W + K&,

1 2 iy = paWy + K
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Josephson Effects

50 nm-thick silicon nitride membrane

\

measurement directly
after pressure applied
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Is the occurrence of the condensate equivalent to superfluidity ?

ideal Bose gas:

— arbitrary energy transfer possible
=) N0 superfluidity '

Idea of Landau 1941

» at low temperatures: only longitudinal phonons
with linear dispersion

» at “high” temperatures: more and other kinds of
excitations contribute, but with energy gap

comment:

superconductivity in metals is
related to an energy gap

nature of excitations is important

phonons

v
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Landau’s modification in 1947:

—— common dispersion curve Feynman —
Feynman

' [ and

roton dispersion: L
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w experimental result
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Rotons Feynman 1954:
Phonons » QM calculation of dispersion curve
| from symmetry considerations
Po
Momentum p » improved by Feynman and Cohen in 1955
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Experimental determination of the dispersion

Feynman’s idea: inelastic neutron scattering

v v . v'Y
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Wave number k/ A~

good agreement with ¢ in, Gmax
linear dispersion with v = 238 m/s

sharp excitations even at high g vectors

single particle excitations are suppressed

Phase velocity v/ m s
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» dispersion not perfectly linear
» anomaly at low wave vectors

—— causes damping by three phonon
scattering

—> anomaly disappears at p > 20 bar
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Experimental Determination of the Dispersion

new high-precision measurement
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