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2.5 Macroscopic Quantum State

Experimental discovery of quantization of circulation

p

p0
= e�mgh/kBT URV

mgh = kBT ln

✓
p

p0

◆
UkV

dd CV =
1

6
D0⇡

2k2BT / T UjV

vn U9V

vs = �%n
%s

vn U8V

p =
%n
%s%

 
Q̇

AST

!2
UeV

@%nvn
@t

+
@%svs
@t

= 0 UdV

%s 6= U3V

FA

�0Q̇2
=

%n
%s%

1

T 2S2
UNV

vn =
Q̇

A%ST
URyV

dm!2r URRV

dmg URkV

tan↵ =
dz

dr
=

!2r

g
URjV

rotvs = 0 UR9V

I B UR8V

z =
%n
%

!2

2g
r UReV

µ = �kBT

N0
URdV

R

thin wire
∅ 2.5 µm, 
5 cm long

vibrating wire excited by current pules   (Joe Vinen 1961)

2.4 Macroscopic Quantum State 55

rotation was reversed. During this sequence distinctive hysteretic effects were
visible. In such experiments, indications for a quantization up to n = 4 have
been found (not shown in Fig. 2.35).
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Fig. 2.35. Circulation κ in units of h/m4 as a function of the angular velocity
of the rotating cylinder. The arrows indicate the sequence in which the angular
velocity was changed [90]

Vortices with Quantized Circulation

We have seen that in a multiply connected region the circulation of the su-
perfluid component can be finite and that its magnitude is quantized. Now
we come back to the question why the superfluid component seems to partic-
ipate in the rotation in singly connected regions. The reason is that vortices
occur under rotation having a normal-fluid core so that no singly connected
region exists within the superfluid component. The occurrence of vortices in
helium II therefore provides the explanation for the ‘classical’ meniscus ob-
served in Osborne’s experiments. A schematic illustration of the situation is
shown in Fig. 2.36a.

The occurrence of a normal-fluid core in such vortices can be made plau-
sible in the following way. As in a vortex in a classical liquid, the velocity
of the superfluid component rises proportional to 1/r with decreasing dis-
tance r from the center of the vortex. As soon as the critical velocity is ex-
ceeded, superfluidity breaks down and a normal-fluid region is formed. The
radial dependence of !s/! and vs in the vicinity of a vortex core is shown in
Fig. 2.36b. Using classical hydrodynamics and (2.75) one finds for the velocity
of the superfluid component:

transversal modes  ≙ two circular polarized modes 

► without rotation: degenerate
► with rotation: lifting of degeneracy by Magnus force

frequency splitting:

effective mass / length 
(wire + ½ of expelled liquid)

► quantization with expected value
► hysteresis effects are observed

► modern measurements up to n = 4

experimental results
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What has this to do with the rotation of bulk helium in a simply connected region?

vortices may occur with normal fluid core 
resulting in a multiply connected region

56 2 Superfluid 4He – Helium II
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Fig. 2.36. (a) Schematic illustration of vortices in a rotating vessel containing
helium II. (b) Variation of vs and !s/! as a function of the distance from the vortex
center. The normal-fluid vortex core is indicated by the grey shading
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We can estimate the diameter d0 of the vortex core if we use as a rough
approximation in (2.77) for vs, the critical velocity for roton formation (see
Sect. 2.5.3). In this way, we find the very small value of only a few Å for
T → 0. The radius of the vortex core corresponds to the correlation length –
or healing length. This quantity is defined by the length over which the su-
perfluid density falls from its bulk value to zero.

The energy Ev per unit length of a vortex can be calculated by integrating
the kinetic energy per unit volume associated with the rotation of #s, i.e.,

Ev =
b∫

a0

#sv2
s

2
2πr dr . (2.78)

Here, a0 denotes the radius of the normal-fluid core and b is given either by
the radius R of the vessel or by half the distance between the vortices. Using
κ = vs 2πr we find

Ev =
#sκ2

4π
ln

(
b

a0

)
∝ n2 . (2.79)

Because of the quadratic dependence Ev ∝ n2, the creation of many vortices
with n = 1 is energetically more favorable than the creation of a smaller
number of vortices with correspondingly higher circulation. The angular mo-
mentum Lv per unit length associated with a single vortex is given by

Lv =
R∫

0

#sr vs 2πr dr =
1
2
#sκR2 . (2.80)
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Fig. 2.36. (a) Schematic illustration of vortices in a rotating vessel containing
helium II. (b) Variation of vs and !s/! as a function of the distance from the vortex
center. The normal-fluid vortex core is indicated by the grey shading
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Sect. 2.5.3). In this way, we find the very small value of only a few Å for
T → 0. The radius of the vortex core corresponds to the correlation length –
or healing length. This quantity is defined by the length over which the su-
perfluid density falls from its bulk value to zero.

The energy Ev per unit length of a vortex can be calculated by integrating
the kinetic energy per unit volume associated with the rotation of #s, i.e.,

Ev =
b∫

a0

#sv2
s

2
2πr dr . (2.78)

Here, a0 denotes the radius of the normal-fluid core and b is given either by
the radius R of the vessel or by half the distance between the vortices. Using
κ = vs 2πr we find

Ev =
#sκ2

4π
ln

(
b

a0

)
∝ n2 . (2.79)
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line of constant flow

core

with                           and classical hydrodynamics one finds

normal core:  

≙ coherence length
healing length

2.5 Macroscopic Quantum State
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Energy of a vortex

2.5 Macroscopic Quantum State

energy / length

kinetic energy / volume

: radius of vortex core
: radius of vessel or ½ distance to next vortex

vortex formation with  n = 1 is preferred
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Why is not a large vortex forming?

splitting up in many small vortices 
prohibits large kinetic energy in core
of vortex near the axis of rotation
(velocity at the edge of vessel is given)
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At what velocity vortices are formed ?

2.5 Macroscopic Quantum State

concept of critical velocity
will be discussed in 
section 2.6

comment:

critical angular velocity

angular momentum

Experimental observation of vortices
► meniscus is rotating vessels
► damping of second sound
► electrometer experiments

► exploding electron bubbles
► decorating with hydrogen ice particles
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2.5 Macroscopic Quantum State

Electrometer

210Po source (a)
5 mm

► a source       helium ionized         electrons form bubbles
► bubbles are captured by vortex lines via Magnus force
► E field is pulling bubbles alongside of vortex line to surface

► measurement of charge is proportional to number vortex lines
► uniform acceleration over 10 h  to  10 rot/min   

Experimental observation of vortices

V
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2.5 Macroscopic Quantum State

Experimental observation of vortices

3H source (e-)

2 cm

fluorescence
screen

glass fiber

T = 100 mK
ℓ = 25 mm
3 … 8 rot/min

V
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2.5 Macroscopic Quantum State

Experimental observation of vortices

Abrikosov lattice Type 2 superconductor     
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2.5 Macroscopic Quantum State

Experimental observation of vortices
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2.5 Macroscopic Quantum State

Josephson Effects

20 2 Superfluid 4He – Helium II

happen, because, unless special care is taken, temperature gradients between
the inside and the outside of the beaker occur, leading to dissipation and thus
to a rapid damping of the oscillation.

2.1.3 Thermomechanical Effect

The thermomechanical effect is another unique property of helium II. A
schematic illustration of an experimental setup to observe this effect is shown
in Fig. 2.6. Two vessels (A and B), both containing helium II are connected
via a very thin capillary. Temperature and pressure are equal in both vessels
at the beginning of the experiment and thus the helium levels in the two
vessels are the same. Increasing the pressure in A results in a flow of helium
towards B. Surprisingly, this causes a difference in temperature in the two
vessels. The temperature in B decreases somewhat, whereas it increases in A.
Equalizing the pressure difference again brings the system back to its starting
condition indicating that this is a reversible process. This experiment clearly
shows that there is mass flow in helium II associated with the heat flow. How-
ever, the fact that the direction of heat flow is actually opposite to the flow
of mass is very peculiar.

B

∆p

T

∆TT −

A

Fig. 2.6. Schematic illustration of the
principle of the thermomechanical effect

The reversal of the experiment discussed above, namely generation of
a pressure difference by heating makes possible the observation of a very
attractive phenomenon, the so-called fountain effect (Fig. 2.7). It was first
observed by Allen and Jones in 1938 in connection with thermal transport
measurements [46]. The fountain effect can be realized by using a flask with
a thin neck immersed in helium at T < Tλ. The lower part of the flask is
filled with a fine compressed powder and is open at the bottom. Above the
powder tablet an electrical heater is located in the flask. Without heating,
the flask fills up with helium until the level of the bath is reached. Heating
the helium in the flask results in a fountain of helium ejected from the top
of the flask due to the thermomechanical effect. Stationary fountains with
heights up to 30 cm have been achieved in this way. Usually, such fountains
show turbulent flow. However, under certain conditions (low heater power,
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2.5 Macroscopic Quantum State

Josephson Effects

50 nm-thick silicon nitride membrane

measurement directly
after pressure applied
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2.6 Excitation Spectrum of He-II: Landau Model

Is the occurrence of the condensate equivalent to superfluidity ?
superconductivity in metals is 
related to an energy gap

nature of excitations is important

comment:

ideal Bose gas:   

arbitrary energy transfer possible 
no superfluidity !

Idea of Landau 1941

► at low temperatures: only longitudinal phonons 
with linear dispersion

► at “high” temperatures: more and other kinds of 
excitations contribute, but with energy gap

p

E

phonons
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2.6 Excitation Spectrum of He-II: Landau Model

Landau’s modification in 1947:  
common dispersion curve  

roton dispersion:

Feynman 1954:

►QM calculation of dispersion curve
from symmetry considerations

►improved by Feynman  and Cohen in 1955

2.5 Excitation Spectrum of Helium II 61
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E
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p0 Fig. 2.40. Dispersion curve of helium II,
after a suggestion of Landau in 1947

and

!n,r =
2 p4

0

3 !3

√
m∗

(2π)3kBT
e−∆r/kBT . (2.88)

Figure 2.41 shows the normal-fluid component as a function of temper-
ature. The data have been obtained in second-sound measurements. At low
temperatures (T < 0.6K) the phonon contribution dominates, and !n ∝ T 4

is observed as expected. At higher temperatures, the normal-fluid component
rises more steeply due to the roton contribution. Above T = 1.2K the data
are identical to the data shown in Sect. 2.2.3. As we have seen, in this range
the temperature dependence can be approximated by !n ∝ (T/Tλ)5.6.

Temperature T / K

10-8

10-6

10-4

10-2

100

ρ n
/

ρ λ

T 4

T 5.6

He II

0.1 0.2 20.5 1
Fig. 2.41. Temperature dependence of
the normal-fluid component !n/!λ of
helium II [97]

In 1953 Feynman showed that the excitation spectrum postulated by
Landau can be derived – at least qualitatively – from quantum-mechanical
considerations [36]. In addition, he suggested the investigation of the energy

Feynman

Feynman 
and 

Cohen

experimental result
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2.6 Excitation Spectrum of He-II: Landau Model

Experimental determination of the dispersion 

Feynman’s idea: inelastic neutron scattering

62 2 Superfluid 4He – Helium II

spectrum of excitations in helium II by inelastic neutron-scattering experi-
ments. A spectrum obtained with this technique is shown in Fig. 2.42. At
small energies one finds ordinary sound waves, i.e. phonons. This part of the
dispersion curve can be approximated by E = p v, where v = 238m s−1 is the
sound velocity and p the quasimomentum of the phonons. The excitations in
the range of the maximum of E(p) are often called maxons. As mentioned
above, the excitations near the minimum were named rotons by Landau.
The regions of the dispersion curve around the roton minimum and maxon
maximum, where ∂E/∂k is small, have a high density of states and hence
motivated their naming. The microscopic nature of the rotons is still, to a
large extent, unknown today, therefore the name has no obvious meaning,
contrary to early suggestions.

The fact that well-defined excitations exist up to high wave numbers is
very astonishing, and distinguishes helium II from ordinary liquids. Of course,
at low frequencies sound waves do also exist in ordinary liquids, but at high
wave numbers the lifetime of phonons becomes very short and collective exci-
tations are overdamped in ordinary liquids. Besides, one finds single-particle
excitations in all other liquids, which do not occur in helium II.

If we look at the dispersion curve in more detail, we find that its behavior
is remarkable, even at small wave numbers. Helium seems to be the only liq-
uid for which the sound velocity initially increases with increasing frequency.
This effect is very small, however, and not visible in Fig. 2.42. Nevertheless,
this has considerable consequences for the damping of sound waves, since this
anomalous dispersion makes three-phonon scattering processes much easier.
For a long time the unusual slope of the dispersion curve was not generally
accepted. The proof of its existence was finally established by very precise
ultrasonic measurements (Fig. 2.43). First, the phase velocity increases at
small wave numbers passes through a maximum at 0.42 Å−1, and then de-
creases again at higher wave numbers. This anomaly disappears for pressures
higher than 20 bar [101].
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Fig. 2.42. Dispersion curve of he-
lium II as determined experimentally
[98]
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Fig. 2.43. Phase velocity of phonons
in helium II at small wave numbers [99,
100]

2.5.2 Specific Heat

The discussion of the specific heat of helium II can be subdivided into three
temperature ranges, each being dominated by different excitations.
T < 0.6K In this range, only longitudinal phonons having long wavelengths
are excited in liquid helium. These phonons can be described by the Debye
model (see Sect. 6.1). According to this theory, the specific heat is expected
to follow

Cph =
2π2k4

B

15"!3v3
1

T 3 , (2.89)

i.e., the temperature dependence should be Cph ∝ T 3, as in solids. Note that,
in contrast to solids, only one phonon branch exists in helium. As shown in
Fig. 2.44a this temperature dependence has indeed been observed experi-
mentally below 0.6 K. This conclusion is confirmed by measurements of the
thermal conductivity Λ in the so-called Casimir regime (see Sect. 6.2.4) where
the relation

Λ =
1
3

Cph v d ∝ T 3 (2.90)

holds. In this regime, the temperature dependence of the conductivity is
exclusively determined by the specific heat because the mean free path $ of
the phonons is given by the diameter d. The results of such measurements
on helium II at very low temperatures are shown in Fig. 2.44b. The two data
sets belong to measurements with capillaries with different diameter. The
T 3 dependence is found in both experiments below T ≈ 0.6 K in agreement
with the specific heat data. The absolute value of the thermal conductivity
is determined by the diameter of the capillaries, as expected.
0.6 < T < 1.2K In this temperature range, the specific heat of helium II is
dominated by the contribution of rotons. This contribution can be calculated

► good agreement with qmin, qmax
► linear dispersion with v = 238 m/s

► sharp excitations even at high q vectors

► single particle excitations are suppressed

phonons

maxons

rotons

► dispersion not perfectly linear
► anomaly at low wave vectors

causes damping by three phonon 
scattering
anomaly disappears at  p > 20 bar
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2.6 Excitation Spectrum of He-II: Landau Model

Experimental Determination of the Dispersion 

new high-precision measurement


