

3rd sound experiment

SS 2022

MVCMP-1

Procedure

- periodic local heating
- $\blacktriangleright Q_s$ flows to warm location \blacksquare thickness changes
- ► surface wave \triangleq 3rd sound
- optical detection of thickness

Measurement and results

- ► 3rd sound velocity vs. *z* (log/log plot)
- different surfaces: v_3 almost independent
- line rightarrow theory $v_3 \propto \sqrt{z}$
- good agreement except for very thick films

SS 2022 **2.3 Proj** MVCMP-1

3rd sound experiment: temperature dependence

Measurement and results

- 3^{rd} sound velocity vs T
- points at T = 1.25 K normalized to (•)
- v_3 is rising with decreasing T
- ▶ $T \rightarrow 0$: $v_3 = 1.5 \text{ m/s}$ (very slow)
- dashed line m riangle theory $v_3 \propto \sqrt{arrho_{
 m s}}$
- systematic deviations: origin unknow, but likely due to generation process

3rd sound in very thin films:

3rd sound propagation can be observed down to 2.1 monolayers

onset of superfluidity

2.3 Properties of He-II described using MVCMP-1 the two-fluid model

3rd sound in moving films:

SS 2022

Detection of 3rd sound experiment in ultralow films:

SS 2022

MVCMP-1

time

Experimental results:

for ultrathin films:

$$v_3^2 = \frac{\overline{\rho_{\rm s}}}{\rho_{\rm s,bulk}} \frac{3RT}{m} \ln \frac{p_0}{p}$$

- experimental threshold of 2.1 monolayers independent of substrate
- film thickness determine by amount of helium and surface area
- extrapolation suggests that 1.57 monolayers might be the onset threshold

(iv) Fourth sound

sound propagation in fine powders / slits $\,oldsymbol{v}_{
m n}pprox 0$

oscillations in total density, in ratio of superfluid to normalfluid density, in pressure, in temperature, in entropy

$$v_4^2 = \frac{\varrho_{\rm s}}{\varrho} v_1^2 \left[1 + \frac{2ST}{\varrho C_p} \left(\frac{\partial \varrho}{\partial T} \right)_p \right] + \frac{\varrho_{\rm n}}{\varrho} v_2^2$$

$$\ll 1$$

$$v_{4} \approx \sqrt{\frac{\varrho_{s}}{\varrho}} v_{1}^{2} + \underbrace{\frac{\varrho_{n}}{\varrho}}_{2} v_{2}^{2} \approx \sqrt{\frac{\varrho_{s}}{\varrho}} v_{1}^{2}$$
5th sound

4th sound generation like for 1st sound, but $\boldsymbol{v}_{\mathrm{n}} pprox 0$

4th sound experiments

4th sound generation like for 1st sound, but $\boldsymbol{v}_{n} \approx 0$ $T \rightarrow 0$ $v_{4} = v_{1} \approx 238 \text{ m/s}$, since $\varrho_{s} = \varrho$ $T = T_{\lambda}$ $v_{4} = 0$

$$v_4 \approx \sqrt{\frac{\varrho_{\rm s}}{\varrho} v_1^2 + \frac{\varrho_{\rm n}}{\varrho} v_2^2}$$

Persistent flow and 4th sound

 $v_{\rm D}$

persistent flow velocity

 $v_4 \approx v_{4,0} \pm \frac{\varrho_{\rm s}}{\varrho} v_{\rm D}$

coupling of a compression wave to second sound

2

Einstein 1924

London 1938

Bose 1925

Basic idea of Fritz London:

dissipation-less motion

macroscopic wave function

a) Ideal Bose gas

SS 2022

MVCMP-1

non-interacting Bose gas (rough approximation for liquid He)

let's consider: 1 cm³ cube of liquid ⁴He $\triangleq 10^{22}$ atoms with mass m

eigenstates for free particles in a cube:

$$E_n = \frac{\hbar^2}{2m} \left(\frac{\pi}{L}\right)^2 n^2 \qquad \qquad \text{with} \qquad n^2 = n_x^2 + n_y^2 + n_z^2$$

 $T = 0 \longrightarrow$ all atoms are in the ground state E_{111} trivial !

But at finite temperatures?

consider energy difference between ground state and first excited state

$$\Delta E/k_{\rm B} = (E_{211} - E_{111})/k_{\rm B} \approx 2 \times 10^{-14} \,\mathrm{K}$$

if Boltzmann statistics would hold model of condensate at 1 K!!!

however, Bose-Einstein distribution is relevant here

$$f(E,T) = \frac{1}{e^{(E-\mu)/k_{\rm B}T} - 1}$$

chemical potential $\mu = \frac{\partial F}{\partial N}$

what we know:

SS 2022

MVCMP-1

:
$$\mu < E_{111} \longrightarrow$$
 otherwise, negative occupation
 $\mu \neq 0 \longrightarrow$ since particle number conserved

Occupation of ground state $E_{111} = 0$

SS 2022

MVCMP-1

 $f(0,T) = \frac{1}{e^{-\mu/k_{\rm B}T} - 1}$ \longrightarrow occupation depends critically on μ

$$f(0, T \to 0) \to \infty$$
 if $\mu \to 0$ faster than $T \to 0$ $\left(\begin{array}{c} \frac{1}{e^0 - 1} \to \infty \end{array} \right)$

What is the temperature dependence of $\mu(T)$?

for this let us consider a real, but non-interacting gas

$$k = -k_{\rm B}T \ln \left(\frac{V_{\rm A}}{V_{\rm Q}}\right)$$

quantum volume $V_{\rm Q} = \left(\frac{h}{\sqrt{2\pi m k_{\rm B}T}}\right)^3 = \lambda_{\rm B}^3$

thermal de Broglie wavelength

For ⁴He $\longrightarrow \lambda_{\rm B}^3 = (8.7 \text{ Å})^3$ at 1 K $V_{\rm A} = V/N = (3.8 \text{ Å})^3$ in comparison

Calculation of μ : how large is μ at 1K? (revers argument)

SS 2022

MVCMP-1

for
$$T \to 0$$
 \longrightarrow $f_{111} \to N$
$$\lim_{T \to 0} f(0,T) = N_0(T) = \lim_{T \to 0} \left(\frac{1}{e^{-\mu/k_{\rm B}T} - 1} \right)$$
$$E_{111} = 0, \text{ ground state}$$

$$\approx \lim_{T \to 0} \left(\frac{1}{1 - \mu/(k_{\rm B}T) + \ldots - 1} \right) \approx -\frac{k_{\rm B}T}{\mu}$$

$$\frown \quad \mu = -\frac{k_{\rm B}T}{N_0} \qquad \text{close to } T = 0$$

at $T = 1 \text{ K} \longrightarrow \mu/k_{\text{B}} \approx 10^{-22} \text{ K}$

Calculation of
$$\,N_0\,$$
 and $\,N_{
m e}\,$

SS 2022

MVCMP-1

number of particles in excited states

$$\sum_{i} f(E_i, T) = N = N_0(T) + N_e(T)$$
$$= N_0(T) + \int_0^\infty D(E) f(E, T) dE$$

density of states for free particles without D(0)

density of states for free particles $\, E_k \propto k^2 \,$

$$D(E) = \frac{V(2m)^{3/2} \sqrt{E}}{4\pi^2 \hbar^3}$$

with $E/k_{\rm B}T = x$ and $|\mu| \ll \Delta E \longrightarrow \exp[(E-\mu)/k_{\rm B}T] \approx \exp(E/k_{\rm B}T)$

•
$$N = N_0 + \frac{V}{4\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} (k_{\rm B}T)^{3/2} \int_{0}^{\infty} \frac{\sqrt{x}}{e^x - 1} \, \mathrm{d}x$$

 $\Gamma(5/2) \times \zeta(5/2) \approx 1.783$

with
$$V_{\rm Q} = \left(\frac{h}{\sqrt{2\pi m k_{\rm B}T}}\right)^3 = \lambda_{\rm B}^3$$

$$N \approx N_0 + 2.6 \, \frac{V}{V_{\rm Q}}$$

$$N_0 = N - 2.6 rac{V}{V_{
m Q}}$$

Interpretation NV_A as long as $2.6 \frac{V}{V_Q} \ll 10^{22}$, which means that the de Broglie wavelength is significantly larger as an atom \longrightarrow condensation factor $\sqrt[3]{2.6} = 1.37$

 $\blacktriangleright T = 0 \longrightarrow N_0 = N \quad \text{trivial } !$

- ▶ $0 < T < T_c$ \longrightarrow N_0 still macroscopically large!
- ► $N_{\rm e}$ \triangleq normalfluid component

comment:

 $\lambda_{
m B}^3$ must not be as large as the vessel as proposed by London