Determination of On

Experiment of Andronikasvili (1948)

First direct observation of Onp

torsional fiber

Elepter Luarsabovich
Andronikashvili (1910-1989)

50 aluminum discs

thickness 13 um
diameter 3.5 cm
spacing 210 um
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observation === slow resonant oscillations (mass and torsion fiber)

Important parameter is the viscos penetration depth
for wave with frequency w

d<d: » On is dragged along with torsion oscillator above and below T
» Os remains stationary

» period of oscillation determined by mass of torsion oscillator (and spring constant)

=) On can be determined
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b) Beaker experiments

films are formed with a thickness of ~ 200 A in saturated vapor pressure also against gravity

let us understand how
comment: the film formation is a “classical” phenomenon

(i) Film formation in saturated vapor

lg In thermal equilibrium

.
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chemical potential for film (gas and liquid)

gravitational force is compensated by v. Waals forces
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film thinkness:

\

depends on film thickness: for d < 30nm

for d > 80nm

atomic polarisability of helium + wall \

(Hamaker constant) _ _
retardation of potential

typical value: d~20nm at z=10cm

comment: property of superfluidity is unimportant for the
film formation and thickness, but for the film flow
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(ii) film formation in unsaturated vapor

How does d depend on p ?

=) barometric formula

p

helium film

» decrease of pressure == decrease of film thickness

» in practice: thinknesses of sub-mono layers are possible and realized

l

investigation of superfluidity with third sound: onset of superfluidity at n> 2.1 layers
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now back to the film flow:
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Interesting question: @s flows with S=0! === rest should warm up and helium flowing into
a vessel should have 7= 0!

but thermal equilibrium via gas phase
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density

mass flow

mass conservation
continuity egn.

ideal fluid

entropy conservation

an equation of motion for
superfluid component
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c) Thermomechanical effect
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+ Os == coolingin B
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Reverse thermomechanical effect: Fountain effect

Heater Powder AT Y Ap
Os
» heating of helium inside vessel ===  ratio of increases inside the vessel

» the temperature inside is higher than outside
» to equalize the system Os flows through superleak (compressed powder)
» pressure rises and fountain starts to flow (and flows as long as heater is on)
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d) Heat Transport

» in not too small capillaries Un # 0

» even in equilibrium (Ap= 0S AT') there is a constant flow of 0n
from the warm end to the cold end and Qs in the opposite direction by “convection”

On —— cold end heat transport
entropy transport 2 heat transport maximum at 1.8 K
QS —— warm end where

» limited only by the mobility of On and therefore 7n

» viscos mass flow of On :

for capillaries
(*)

= for slits

volume rate

» entropy flow — heat flow (* *) 6Q =T4S
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(*) insertin (* *) and London equation (Ap= oS AT)

\ heat flow log /AT vs log d
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