LECTURE 21

PART 3: COLLISIONS OF RELATIVISTIC NUCLEI

Kai Schweda

OUTLINE

- brief history
- some kinematics / collision geometry
- the large hadron collider
- the ALICE apparatus
- the next decade

A RELATIVISTIC NUCLEAR COLLISION @BEVALAC

- ${ }^{238} \mathrm{U}^{92+}$ in nuclear emulsion (Ag-Br), photo emulsion, developed, using microscope
- forward: projectile fragments
- star-like: target fragment

DISCOVERY OF THE TAU NEUTRINO

Detecting a Tau Neutrino

Of one million million tau neutrinos crossing the DONUT detector, scientists expect about one to interact with an iron nucleus.

- Direct Observation of ν_{τ} (DONUT)
- ν_{τ} beam from Fermilab
- $\nu_{\tau}+N \rightarrow \tau^{-}+X$ $\tau \rightarrow \nu_{\tau}+h \quad\left(\right.$ or $\left.\mu+\bar{\nu}_{\mu}\right)$
- lifetime: $81.7 \mu \mathrm{~m}$
- emulsion used for micrometer precision
- also, e.g. T2K, OPERA

THE BEGINNING

"It would be intriguing to explore new phenomena by distributing high energy or high nuclear matter over a relatively large volume."
"In this way one could temporarily restore broken symmetries of the physical vacuum and possibly create abnormal states of nuclear matter."
T.D. Lee, Bear Mountain, NY, 1974.
"Nevertheless, such speculations reminds us that the possibility of totally unexpected phenomena may be the most compelling reason to consider relativistic nucleus-nucleus collisions. It is regrettable that It is so hard to estimate the odds for this to happen."
J.D. Bjorken, FNAL, PRD 27 (1983) 140.

THE HAGEDORN LIMITING TEMPERATURE

hadron mass spectrum (number of states with increasing mass) rises exponentially Hagedorn concluded that $\mathrm{T}_{\mathrm{H}}=0.15 \mathrm{GeV}$ would be the ultimate temperature of all matter, R Hagedorn 1965 Nuovo Cim. Suppl. 3147.

1967: 1411 states known
1996: 4627 states known
exponential fit, $\mathrm{T}_{\mathrm{H}}=0.158 \mathrm{GeV}$
$\mathrm{T}_{\mathrm{H}}=1.7 \times 10^{12} \mathrm{~K}$
Physical reason:
Energy put into the system excites high-mass resonances

source: CERN Courier, Sep. 3, 2003

This prevents a further increase of the temperature:
resonance gas: density of resonances ~ energy density

QGP - THE IDEA

1973 - Birth of QCD
All ideas in place:
Yang-Mills theory; SU(3) color symmetry; asymptotic freedom; confinement in color-neutral objects

1975 - Idea of quark deconfinement at high temperature and/or density
Collins, Perry, PRL 34 (1975) 1353
"Our basic picture then is that matter at densities higher than nuclear matter consists of a quark soup."
Idea based on weak coupling (asymptotic freedom)
Cabibbo, Parisi, PLB, 59 (1975) 67
Exponential hadron spectrum not necessarily connected with a limiting temperature Rather: Different phase in which quarks are not confined

It was soon realized that this new state could be created and studied in heavy-ion collisions

PHASE DIAGRAM OF STRONGLY INTERACTING MATTER

source: NSAC Long Range Plan (1983)

CENTRAL HEAVY ION COLLISIONS

$$
\bigcap \rightarrow
$$

before collision, in center-of-mass

1) AT LAB ENERGIES \& 10 GEV PER NUCLEON

2) At higher energies: transparency
 highengrgy density, LOW BARYON DENSITY

BRIEF HISTORY

1974 Bear mountain workshop 'BeV/nucleon collisions of heavy ions' [link]
Focus on exotic matter states and astrophysical implications
1983 long range plan for nuclear physics in US:
Realization that the just abandoned pp collider (CBA/Isabelle) project at
Brookhaven could be turned into a nuclear collider inexpensively
1984: 1-2 GeV/c per nucleon beam from SuperHILAC into Bevalac at Berkeley
1986
beams of silicon at Brookhaven AGS ($\mathrm{V}_{\mathrm{SN}} \approx 5 \mathrm{GeV}$)

1992/1994
beams of gold at Brookhaven AGS ($V s_{\mathrm{NN}} \approx 5 \mathrm{GeV}$)
beams of lead at CERN SPS ($V_{S_{\mathrm{NN}}} \approx 17 \mathrm{GeV}$)
2000: gold-gold collisions at RHIC ($V_{S_{N N}} \approx 200 \mathrm{GeV}$)
G. Baym, arXiv:1701.03972

2010: lead-lead collisions at the LHC ($\mathrm{V}_{\mathrm{S}_{\mathrm{N}}} \approx 2760 \mathrm{GeV}$)
2015: lead-lead collisions at the LHC ($\mathrm{V}_{\mathrm{S}_{\mathrm{NN}}} \approx 5020 \mathrm{GeV}$)

Pseudorapidity η

$$
y=\frac{1}{2} \ln \frac{E+p \cos \vartheta}{E-p \cos \vartheta} \stackrel{p \gg m}{\approx} \frac{1}{2} \ln \frac{1+\cos \vartheta}{1-\cos \vartheta}=\frac{1}{2} \ln \frac{2 \cos ^{2} \frac{\vartheta}{2}}{2 \sin ^{2} \frac{\vartheta}{2}}=-\ln \left[\tan \frac{\vartheta}{2}\right]=: \eta
$$

$$
y=\eta \quad \text { for } m=0
$$

$$
\eta=0
$$

Analogous to the relations for the rapidity we find:

$$
p=p_{T} \cdot \cosh \eta, \quad p_{L}=p_{T} \cdot \sinh \eta
$$

Rapidity

The rapidity y is a generalization of the (longitudinal) velocity $\beta_{\mathrm{L}}=\rho_{\mathrm{L}} / E$:

$y:=\operatorname{arctanh} \beta_{L}=\frac{1}{2} \ln \frac{1+\beta_{L}}{1-\beta_{L}}=\frac{1}{2} \ln \frac{E+p_{L}}{E-p_{L}}$
$y \approx \beta_{L}$ for $\beta_{L} \ll 1$

With

$$
e^{y}=\sqrt{\frac{E+p_{L}}{E-p_{L}}}, \quad e^{-y}=\sqrt{\frac{E-p_{L}}{E+p_{L}}}
$$

and

$$
\sinh x=\frac{1}{2}\left(e^{x}-e^{-x}\right), \quad \cosh x=\frac{1}{2}\left(e^{x}+e^{-x}\right)
$$

one obtains

$$
E=m_{T} \cdot \cosh y, \quad p_{L}=m_{T} \cdot \sinh y
$$

where $\quad m_{T}:=\sqrt{m^{2}+p_{T}^{2}}$ is called transverse mass

Example: Beam Rapidities

$$
y=\frac{1}{2} \ln \frac{E+p_{z}}{E-p_{z}}=\ln \frac{E+p_{z}}{\sqrt{E^{2}-p_{z}^{2}}}=\ln \frac{E+p_{z}}{m} \approx \ln \frac{2 E}{m}
$$

Beam momentum (GeV / c)	Beam rapidity
100	5.36
158	5.81
$1380(=3500 \cdot 82 / 208)$	7.99
$2760(=7000 \cdot 82 / 208)$	8.86
3500	8.92
6500	9.54
7000	9.61

COLLISION GEOMETRY

Der Large Hadron Collider am CERN

Der Large Hadron Collider am CERN

Der Large Hadron Collider am CERN

The Large Hadron Collider at CERN

orthogonal

Revolution frequency: c/26.8 km = 11246 Hz
Time varying field, up to $20 \mathrm{MV} / \mathrm{m}$
LHC RF frequency 400 MHz
Consequence: bunches of protons

400 MHz system:

16 sc cavities
(copper sputtered with niobium) for 16 MV/beam were built and assembled in four modules

$\overrightarrow{\mathbf{F}}=q \cdot(\overrightarrow{\mathbf{E}}+\overrightarrow{\mathbf{V}} \times \overrightarrow{\mathbf{B}})$

$B=\frac{p}{e_{0} \cdot R}$

$\overrightarrow{\mathbf{F}}=q \cdot(\overrightarrow{\mathbf{E}}+\overrightarrow{\mathbf{V}} \times \overrightarrow{\mathbf{B}})$

$B=\frac{p}{e_{0} \cdot R}$

$$
\overrightarrow{\mathbf{F}}=q \cdot(\overrightarrow{\mathbf{E}}+\overrightarrow{\mathbf{V}} \times \overrightarrow{\mathbf{B}})
$$

- Maximum momentum $7000 \mathrm{GeV} / \mathrm{c}$
- Bending radius 2805 m fixed by LEP tunnel

$\overrightarrow{\mathbf{F}}=q \cdot(\overrightarrow{\mathbf{E}}+\overrightarrow{\mathbf{V}} \times \overrightarrow{\mathbf{B}})$

- Maximum momentum $7000 \mathrm{GeV} / \mathrm{c}$
- Bending radius 2805 m fixed by LEP tunnel
- Magnetic field $B=$ 8.33 Tesla

$\overrightarrow{\mathbf{F}}=q \cdot(\overrightarrow{\mathbf{E}}+\overrightarrow{\mathbf{V}} \times \overrightarrow{\mathbf{B}})$

- Maximum momentum $7000 \mathrm{GeV} / \mathrm{c}$
- Bending radius 2805 m fixed by LEP tunnel
- Magnetic field B = 8.33 Tesla
- Iron magnets limited to 2 Tesla, therefore
 superconducting magnets are required

$\overrightarrow{\mathbf{F}}=q \cdot(\overrightarrow{\mathbf{E}}+\overrightarrow{\mathbf{V}} \times \overrightarrow{\mathbf{B}})$

- Maximum momentum $7000 \mathrm{GeV} / \mathrm{c}$
- Bending radius 2805 m fixed by LEP tunnel
- Magnetic field B = 8.33 Tesla
- Iron magnets limited to 2 Tesla, therefore
 superconducting magnets are required
- Deflecting magnetic fields for two beams in opposite directions

with $E=$ energy, $m_{0}=$ rest mass, $e_{0}=$ charge, and $\rho=$ radius
$\mathrm{E}_{\text {lep }}:=100 \mathrm{GeV}$

$$
\mathrm{E}_{\mathrm{Ihc}}:=7000 \mathrm{GeV}
$$

Energy loss for one particle per turn:
$\mathrm{U}_{\text {lep }}=3.844 \times 10^{9} \mathrm{eV}$

$$
\mathrm{U}_{\mathrm{lhc}}=8.121 \times 10^{3} \mathrm{eV}
$$

Total power of synchrotronradiation:
Number of electrons in LEP: $\mathrm{N}_{\text {lep }}:=10^{12}$ Number of protons in LHC $\quad \mathrm{N}_{\text {Ihc }}:=10^{14}$
$P_{\text {total_lep }}:=N_{\text {lep }} \cdot P_{\text {lep }}$
$P_{\text {total_lep }}=1.278 \times 10^{7} \mathrm{~W}$

$$
\begin{aligned}
& P_{\text {total_lhc }}:=N_{\text {lhc }} \cdot P_{\text {lhc }} \\
& P_{\text {total_lhc }}=2.699 \times 10^{3} \mathrm{~W}
\end{aligned}
$$

The power of the synchrotronradiation emitted at the LHC is very small, but the radiation goes into the supraconducting magnets at $1.9 \mathrm{~K} . .20 \mathrm{~K}$

INSIDE THE LHC TUNNEL

ALICE

- Inner Tracker, silicon tracking \& PID
- Time Projection Chamber tracking \& PID
- Particle ID: 0.1-20 GeV/c
- Material budget: $0.08 \mathrm{X}_{0}$
- Momentum resolution ${ }^{\sim} 1-7 \%$ for $p_{T}=0.1-100$ GeV/c

DATA SET - RUN 1 AND RUN 2

System	Year	$\mathrm{Vs}_{\mathrm{NN}}(\mathrm{TeV})$	$L_{\text {int }}$
$\mathrm{Pb}-\mathrm{Pb}$	$\begin{gathered} 2010-2011 \\ 2015 \\ 2018 \end{gathered}$	$\begin{aligned} & 2.76 \\ & 5.02 \\ & 5.02 \end{aligned}$	$\begin{gathered} \sim 75 \mu b^{-1} \\ \sim 250 \mu b^{-1} \\ \sim 0.9 \mathrm{nb}^{-1} \end{gathered}$
Xe-Xe	2017	5.44	$\sim 0.3 \mu \mathrm{~b}{ }^{-1}$
p-Pb	$\begin{aligned} & 2013 \\ & 2016 \end{aligned}$	$\begin{gathered} 5.02 \\ 5.02,8.16 \end{gathered}$	$\begin{gathered} \sim 15 \mathrm{nb}^{-1} \\ \sim 3 \mathrm{nb}-1, \sim 25 \mathrm{nb}^{-1} \end{gathered}$
pp	$\begin{aligned} & 2009-2013 \\ & 2015-2018 \end{aligned}$	$\begin{gathered} 0.9,2.76 \\ 7,8 \\ 5.02,13 \end{gathered}$	$\begin{gathered} \sim 200 \mu \mathrm{pb}^{-1}, \sim 100 \\ \mu \mathrm{p}^{-1}, \\ \sim 1.5 \mathrm{pb}^{-1}, \sim 2.5 \\ \mathrm{pb}^{-1} \\ \sim 1.3 \mathrm{pb}^{-1}, \sim 59 \\ \mathrm{pb}^{-1} \end{gathered}$

9x central collisions
8h LHC pilot run
Reference data, initial state

New pp reference, high-multiplicity triggers

THE ALICE TPC IN NUMBERS MOST CHALLENGING TPC EVER BUILT

 chambers2x18 outer readout chambers

Gas:

~90 m3
Ar-CO2[-N2] (90-10[-5])
temp. homogeneity and stability
< 100mK

557568 readout pads

1000 samples in time direction

Designed for charged-particle tracking and dE/dx measurement in $\mathrm{Pb}-\mathrm{Pb}$ collisions with $\mathrm{dNch} / \mathrm{d} \mathrm{\eta}=8000$, $\sigma(d E / d x) /(d E / d x)<10 \%$

A SINGLE LEAD-LEAD COLLISION

- collision happens here
- 4 k charged particles
over two units of
rapidity
- ALICE tracks and
identifies almost
all particles

Run: 244918
Time: 2015-11-25 10:36:18 Colliding system: $\mathrm{Pb}-\mathrm{Pb}$ Collision energy: 5.02 TeV

- Multiplicity is a measure

PARTICLE IDENTIFICATION IN TPC AND TOF

$\beta \gamma=p / m$

- Specific energy loss in TPC-gas
- Large dynamic range ($20 \times$ MIP)
- Low material budget: $0.08 \mathrm{X}_{0}$
- QGP studies: PID is the only game in town

Anti- α particle, discovered by STAR@RHIC, BNL, Upton, NY. Nature 473, 353 (2011).

Mass difference ${ }^{3} \mathrm{He}-$ anti-3 He \rightarrow Test of CPT invariance
ALICE: Nature Physics 11 (2015) 811-814.
$-\left\langle\frac{d E}{d x}\right\rangle=\frac{4 \pi}{m_{e} c^{2}} \cdot \frac{n z^{2}}{\beta^{2}} \cdot\left(\frac{e^{2}}{4 \pi \varepsilon_{0}}\right)^{2} \cdot\left[\ln \left(\frac{2 m_{e} c^{2} \beta^{2}}{I \cdot\left(1-\beta^{2}\right)}\right)-\beta^{2}\right]$

PHOTON CONVERSIONS

TPC as photon spectrometer:
$\gamma+Z \rightarrow e^{+}+e^{-}+Z$
full kinematic reconstruction:
$\left.P_{\gamma}=P_{e^{+}}+P_{e^{-}} \quad \mid{ }^{2}\right)$
$m_{\mathrm{inv}}^{2}=m_{e^{+}}^{2}+m_{e^{-}}^{2}+2 P_{e^{+}} \cdot P_{e^{-}}$
$m_{\mathrm{inv}}^{2}=2 E_{e^{+}} E_{e^{-}}-2 E_{e^{+}} E_{e^{-}} \cdot \cos \alpha$
$m_{\mathrm{inv}}^{2}=2 E_{e^{+}} E_{e^{-}}(1-\cos \alpha)$

X-ray tomography:
access ALICE material budget
access QGP thermal photon emission

Int. J. Mod. Phys. A 29 (2014) 1430044,
Phys. Lett., vol. B754, pp. 235-248, 2016.

LS2 - GET READY FOR 50 KHZ PB-PB - CONTINUOUS READOUT

Inner Tracking System
$10 \mathrm{~m}^{2}$ active silicon area (12.5 Gpixels)
Spatial resolution ~5 ${ }^{2}$
Material budget: $0.0035 \mathrm{X}_{0}$ per
layer

ITS

S20 silleon plxel: setisors (0.4 max) on 280 lacdlers of 2 to f sensors each
Time Projection Chamber
Replace MWPC with GEM-4 stacks
570k pads, 3.4 TBytes/sec

Muon Forward Tracker
Forward Interaction Trigger
next 10 years: 100x more data @ unprecedented precision

RESTART OF THE LHC - RUN 3

- Live event July 5, 16h00
- https://home.cern/news/news/cern/watch-launch-run-3-live-cerns-internal-screens-or-social-media
- DON’T MISS IT!

