LECTURE 21

PART 3: COLLISIONS OF RELATIVISTIC NUCLEI

Kai Schweda

OUTLINE

- brief history
- some kinematics / collision geometry
- the large hadron collider
- the ALICE apparatus
- the next decade

A RELATIVISTIC NUCLEAR COLLISION @BEVALAC

Fig. II.8-C. The pattern of tracks left by a 960-MeV-per-nucleon ²³⁸U nucleus colliding with another nucleus in a photographic emulsion.

- ²³⁸U⁹²⁺ in nuclear emulsion (Ag-Br), photo emulsion, developed, using microscope
- forward: projectile fragments
- star-like: target fragment

DISCOVERY OF THE TAU NEUTRINO

Detecting a Tau Neutrino

Of one million million tau neutrinos crossing the DONUT detector, scientists expect about one to interact with an iron nucleus.

- Direct Observation of ν_{τ} (DONUT)
- ν_{τ} beam from Fermilab

•
$$\nu_{\tau} + N \rightarrow \tau^- + X$$

$$\tau
ightarrow
u_{ au} + h \quad (\text{or } \mu + \bar{
u}_{\mu})$$

- lifetime: 81.7μm
- emulsion used for micrometer precision
- also, e.g. T2K, OPERA

DONUT Collaboration, Phys.Lett.B504 (2001) 218, arXiv: 0012035.

THE BEGINNING

"It would be **intriguing** to explore **new phenomena** by **distributing high energy** or **high nuclear matter** over a relatively **large volume**." "In this way one could temporarily **restore** broken **symmetries** of the physical vacuum and possibly **create** abnormal **states** of **nuclear matter**." T.D. Lee, Bear Mountain, NY, 1974.

"Nevertheless, such speculations reminds us that the **possibility** of totally **unexpected phenomena** may be the **most compelling** reason to consider **relativistic nucleus-nucleus collisions**. It is regrettable that It is so **hard** to **estimate** the **odds** for this to happen."

J.D. Bjorken, FNAL, PRD 27 (1983) 140.

THE HAGEDORN LIMITING TEMPERATURE

hadron mass spectrum (number of states with increasing mass) rises exponentially Hagedorn concluded that $T_H = 0.15$ GeV would be the ultimate temperature of all matter, R Hagedorn 1965 Nuovo Cim. Suppl. **3** 147.

1967: 1411 states known

1996: 4627 states known

```
exponential fit, T_H = 0.158 GeV
```

 $T_{\rm H} = 1.7 \times 10^{12} \, {\rm K}$

Physical reason:

Energy put into the system excites

high-mass resonances

source: CERN Courier, Sep. 3, 2003

This prevents a further increase of the temperature:

resonance gas: density of resonances ~ energy density

average energy per resonance $\sim k_B T \sim const$

QGP — THE IDEA

1973 — Birth of QCD

All ideas in place:

Yang-Mills theory; SU(3) color symmetry; asymptotic freedom;

confinement in color-neutral objects

1975 — Idea of quark deconfinement at high temperature and/or density

Collins, Perry, PRL 34 (1975) 1353

"Our basic picture then is that matter at densities higher than nuclear matter consists of a quark soup."

Idea based on weak coupling (asymptotic freedom)

Cabibbo, Parisi, PLB, 59 (1975) 67

Exponential hadron spectrum not necessarily connected with a limiting temperature

Rather: Different phase in which quarks are not confined

It was soon realized that this new state could be created and studied in heavy-ion collisions

PHASE DIAGRAM OF STRONGLY INTERACTING MATTER

BRIEF HISTORY

1974 Bear mountain workshop 'BeV/nucleon collisions of heavy ions' [link]

Focus on exotic matter states and astrophysical implications

1983 long range plan for nuclear physics in US:

Realization that the just abandoned pp collider (CBA/Isabelle) project at Brookhaven could be turned into a nuclear collider inexpensively

1984: 1-2 GeV/*c* per nucleon beam from SuperHILAC into Bevalac at Berkeley 1986

```
beams of silicon at Brookhaven AGS (Vs<sub>NN</sub> ≈ 5 GeV)
beams of oxygen/sulfur at CERN SPS (Vs<sub>NN</sub> ≈ 20 GeV)
1992/1994
```

beams of gold at Brookhaven AGS (Vs_{NN} ≈ 5 GeV)
beams of lead at CERN SPS (Vs_{NN} ≈ 17 GeV)
2000: gold-gold collisions at RHIC (Vs_{NN} ≈ 200 GeV)
2010: lead-lead collisions at the LHC (Vs_{NN} ≈ 2760 GeV)
2015: lead-lead collisions at the LHC (Vs_{NN} ≈ 5020 GeV)

G. Baym, arXiv:1701.03972 and arXiv:hep-ph/0104138v2

courtesy of Klaus Reygers, QGP Physics, SS2017

Pseudorapidity η

Analogous to the relations for the rapidity we find:

 $p = p_T \cdot \cosh \eta, \qquad p_L = p_T \cdot \sinh \eta$

 $\vec{p_T}$

-1.0 -0.5

 $\langle \vec{p}_L \rangle$

Rapidity

and

$$e^{y} = \sqrt{\frac{1}{E - p_{L}}}, \quad e^{-y} = \sqrt{\frac{1}{E + p_{L}}}$$
$$\sinh x = \frac{1}{2} \left(e^{x} - e^{-x} \right), \quad \cosh x = \frac{1}{2} \left(e^{x} + e^{-x} \right)$$

 $|E+p_{L}| = v$

one obtains
$$E = m_T \cdot \cos \theta$$

$$m_T \cdot \cosh y, \quad p_L = m_T \cdot \sinh y$$

 $|E - p_L|$

where $m_T := \sqrt{m^2 + p_T^2}$ is called *transverse mass*

0.5

Example: Beam Rapidities

$$y = \frac{1}{2} \ln \frac{E + p_z}{E - p_z} = \ln \frac{E + p_z}{\sqrt{E^2 - p_z^2}} = \ln \frac{E + p_z}{m} \approx \ln \frac{2E}{m}$$

Beam momentum (GeV/c)	Beam rapidity
100	5.36
158	5.81
1380 (= 3500.82/208)	7.99
2760 (= 7000·82/208)	8.86
3500	8.92
6500	9.54
7000	9.61

Centrality	b _{min} (fm)	b _{max} (fm)	$\langle N_{\rm part} angle$	RMS	(<i>sys</i> .)	$\langle N_{ m coll} angle$	RMS	(<i>sys</i> .)	$\langle T_{\rm AA} \rangle$ 1/mbarn	RMS 1/mbarn	(sys.) 1/mbarn
0–5%	0.00	3.50	382.7	17	3.0	1685	140	190	26.32	2.2	0.85
5-10%	3.50	4.94	329.4	18	4.3	1316	110	140	20.56	1.7	0.67
10-20%	4.94	6.98	260.1	27	3.8	921.2	140	96	14.39	2.2	0.45
20–40%	6.98	9.88	157.2	35	3.1	438.4	150	42	6.850	2.3	0.23
40-60%	9.88	12.09	68.56	22	2.0	127.7	59	11	1.996	0.92	0.097
60-80%	12.09	13.97	22.52	12	0.77	26.71	18	2.0	0.4174	0.29	0.026
80-100%	13.97	20.00	5.604	4.2	0.14	4.441	4.4	0.21	0.06939	0.068	0.0055

Der Large Hadron Collider am CERN

Der Large Hadron Collider am CERN

Der Large Hadron Collider am CERN

Geiger and Marsden 1 MeV c * 5%

and the second s

The Large Hadron Collider at CERN

400 MHz system:

16 sc cavities (copper sputtered with niobium) for 16 MV/beam were built and assembled in four modules

$$\vec{\mathbf{F}} = q \cdot (\vec{\mathbf{E}} + \vec{\mathbf{v}} \times \vec{\mathbf{B}})$$

$$B = \frac{p}{e_0 \cdot R}$$

- Maximum momentum 7000 GeV/c
- Bending radius 2805 m fixed by LEP tunnel

$$\vec{\mathbf{F}} = q \cdot (\vec{\mathbf{E}} + \vec{\mathbf{v}} \times \vec{\mathbf{B}})$$

$$B = \frac{p}{e_0 \cdot R}$$

- Maximum momentum 7000 GeV/c
- Bending radius 2805 m fixed by LEP tunnel
- Magnetic field B = 8.33 Tesla

$$\vec{\mathbf{F}} = q \cdot (\vec{\mathbf{E}} + \vec{\mathbf{v}} \times \vec{\mathbf{B}})$$

$$B = \frac{p}{e_0 \cdot R}$$

- Maximum momentum 7000 GeV/c
- Bending radius 2805 m fixed by LEP tunnel
- Magnetic field B = 8.33 Tesla
- Iron magnets limited to 2 Tesla, therefore superconducting magnets are required

$$\vec{\mathbf{F}} = q \cdot (\vec{\mathbf{E}} + \vec{\mathbf{v}} \times \vec{\mathbf{B}})$$

$$B = \frac{p}{e_0 \cdot R}$$

- Maximum momentum 7000 GeV/c
- Bending radius 2805 m fixed by LEP tunnel
- Magnetic field B = 8.33 Tesla
- Iron magnets limited to 2 Tesla, therefore superconducting magnets are required
- Deflecting magnetic fields for two beams in opposite directions

Power emitted for one particle:
$$P_s = \frac{e_0^2 \cdot c}{6 \cdot \pi \cdot \epsilon_0 \cdot (m_0 \cdot c^2)^4} \cdot \frac{E^4}{\rho^2}$$

with E = energy, m_0 = rest mass, e_0 = charge, and ρ = radius

E_{lep} := 100GeV

Energy loss for one particle per turn:

$$U_{lep} = 3.844 \times 10^9 \,\text{eV}$$
 $U_{lhc} = 8.121 \times 10^3 \,\text{eV}$

Total power of synchrotronradiation:

Number of electrons in LEP: $N_{lep} := 10^{12}$ Number of protons in LHC $N_{lhc} := 10^{14}$

$$P_{total_lep} := N_{lep} \cdot P_{lep} \qquad P_{total_lhc} := N_{lhc} \cdot P_{lhc}$$

$$P_{total_lep} = 1.278 \times 10^{7} W \qquad P_{total_lhc} = 2.699 \times 10^{3} W$$

The power of the synchrotronradiation emitted at the LHC is very small, but the radiation goes into the supraconducting magnets at 1.9 K ... 20 K

INSIDE THE LHC TUNNEL

ALICE

- Inner Tracker, silicon tracking & PID
- Time Projection Chamber tracking & PID
- Particle ID: 0.1-20 GeV/c
- Material budget: 0.08 X₀
- Momentum resolution ~1-7% for $p_T = 0.1-100$ GeV/c

Muon spectrometer

Time of flight – PID

DATA SET – RUN 1 AND RUN 2

System	Year	√s _{NN} (TeV)	L _{int}
Pb-Pb	2010-2011	2.76	~75 μb ⁻¹
	2015	5.02	~250 μb⁻¹
	2018	5.02	~0.9 nb ⁻¹
Xe-Xe	2017	5.44	~0.3 µb⁻¹
p-Pb	2013	5.02	~15 nb ⁻¹
	2016	5.02, 8.16	~3 nb ⁻¹ , ~25 nb ⁻¹
рр	2009-2013	0.9, 2.76, 7, 8	~200 μb ⁻¹ , ~100 μb ⁻¹ ,
	2015-2018	5.02, 13	~1.5 pb ⁻¹ , ~2.5 pb ⁻¹
			~1.3 pb ⁻¹ , ~59 pb ⁻¹

9x central collisions 8h LHC pilot run Reference data, initial state

New pp reference, high-multiplicity triggers

System size

个

A Large Ion Collider Experiment

THE ALICE TPC IN NUMBERS MOST CHALLENGING TPC EVER BUILT

2x18 inner readout chambers

2x18 outer readout chambers Central HV electrode $100kV \rightarrow 400 V/cm$ vdrift = 2.73 cm/µs Total drift time 92 µs Ion drift time ~ 0.5 s

557568 readout pads 1000 samples in time direction Designed for charged-particle tracking and dE/dx measurement in Pb-Pb collisions with dNch/d η =8000, σ (dE/dx)/(dE/dx)<10%

Gas: ~90 m3 Ar-CO2[-N2] (90-10[-5]) temp. homogeneity and stability < 100mK

2.5m 2.5m

A SINGLE LEAD-LEAD COLLISION

ALICE

- collision happens here
- 4k charged particles over two units of rapidity
- ALICE tracks and identifies almost all particles

Run: 244918 Time: 2015-11-25 10:36:18 Colliding system: Pb-Pb Collision energy: 5.02 TeV

 Multiplicity is a measure of the medium s size

PARTICLE IDENTIFICATION IN TPC AND TOF

- Specific energy loss in TPC-gas
- Large dynamic range (20 x MIP)
- Low material budget: 0.08 X₀
- QGP studies: PID is the only game in town

Anti-α particle, discovered by STAR@RHIC, BNL, Upton, NY. Nature 473, 353 (2011).

Mass difference ³He – anti-³He

→ Test of CPT invariance
 ALICE: Nature Physics 11 (2015) 811-814.

$$-\left\langle \frac{dE}{dx} \right\rangle = \frac{4\pi}{m_e c^2} \cdot \frac{nz^2}{\beta^2} \cdot \left(\frac{e^2}{4\pi\varepsilon_0}\right)^2 \cdot \left[\ln\left(\frac{2m_e c^2\beta^2}{I \cdot (1-\beta^2)}\right) - \beta^2\right]$$

PHOTON CONVERSIONS

TPC as photon spectrometer:

 $\gamma + Z \rightarrow e^+ + e^- + Z$

full kinematic reconstruction:

 $P_{\gamma} = P_{e^+} + P_{e^-} \quad | \, (^2)$ $m_{\rm inv}^2 = m_{e^+}^2 + m_{e^-}^2 + 2P_{e^+} \cdot P_{e^-}$ $m_{\rm inv}^2 = 2E_{e^+}E_{e^-} - 2E_{e^+}E_{e^-} \cdot \cos \alpha$ $m_{\rm inv}^2 = 2E_{e^+}E_{e^-}(1-\cos\alpha)$

X-ray tomography:

access ALICE material budget

access QGP thermal photon emission

Int. J. Mod. Phys. A 29 (2014) 1430044, Phys. Lett., vol. B754, pp. 235-248, 2016.

10

29

X (cm)

LS2 – GET READY FOR 50 KHZ PB-PB - CONTINUOUS READOUT

Inner Tracking System 10 m² active silicon area (12.5 Gpixels) Spatial resolution ~5µm Material budget: 0.0035 X₀ per layer

Time Projection ChamberReplace MWPC with GEM-4 stacks570k pads, 3.4 TBytes/sec

Muon Forward Tracker Forward Interaction Trigger

next 10 years: 100x more data @ unprecedented precision

20 silison pixel concors (0.4 m²) on 230 ladders of 2 to 5 sensors each

TPC

MFT

FIT

RESTART OF THE LHC - RUN 3

- Live event July 5, 16h00
- <u>https://home.cern/news/news/cern/watch-launch-run-3-live-cerns-internal-screens-or-social-media</u>

• DON'T MISS IT!