HEAVY ELEMENT PRODUCTION,

THE R AND S PROCESS

Kai Schweda

Where and how was gold cooked?

SOLAR ABUNDANCES - KEY FACTS

Decrease in abundance with atomic number:

- Large negative anomaly at Be, B, Li
- Moderate positive anomaly around Fe
- Sawtooth pattern from odd-even effect

THE S-PROCESS

Elements beyond the iron group:

- not produced by charged-particle reactions (Coulomb barrier)
- possibility: neutron captures
- are free neutrons available in stars

22
Ne(α, n) → 25 Mg
 13 C(α, n) → 16 O

 β -decay times close to valley of stability \sim h,d,y small compared to stellar evolution time

Slow s-process: τ (n-capture) $\gg \tau(\beta$ -decay), read giant phase Rapid r-process: τ (n-capture) $\ll \tau(\beta$ -decay), later, maybe supernova S-Process: slow neutron capture and beta-decays along the stability valley

NEUTRON CAPTURE CROSS SECTION

no Coulomb barrier

for thermal energies: often $\sigma(v) \sim \frac{1}{v}$

cross section increases for low energy

$$\langle \sigma v \rangle = \int_0^{\inf} \sigma v \Phi(v) dv \sim C \cdot \int_0^{\inf} \Phi(v) dv = \text{constant}$$

weak energy dependence of $\langle \sigma v \rangle$

define
$$\langle \sigma \rangle := \frac{\langle \sigma v \rangle}{v_T}$$
, with $v_T = = \left(\frac{2kT}{\mu_n}\right)^{\frac{1}{2}}$, $\mu_n = \frac{m_n m_A}{mN + m_A}$
often: $\langle \sigma \rangle \approx \sigma(v_T)$

exceptions: close to magic numbers $\sigma\downarrow$

light elements, more complicated

TIME SCALE

 $T = 1 - 2 \cdot 10^{8} \text{K}$ $k_{B}T \approx 20 \text{keV}, v = 2 \cdot 10^{6} \text{m/s}$ $n_{n} = 10^{14} / \text{m}^{3}$ rate $\approx n_{n} \langle \sigma v \rangle, \sigma \approx 0.1b = 10^{-29} \text{m}^{2}$ rate $\approx 10^{14} \text{m}^{-3} \cdot 2 \cdot 10^{6} \text{m/s} \cdot 10^{-29} \text{ m}^{2} = 2 \cdot 10^{-9} \text{s}^{-1}$

1 neutron capture in 20 years : slow (!)

CROSS SECTION TO NEUTRON CAPTURE

Drop by factor of 100 - 1000 around closed shells

NEUTRON CROSS SECTION X SOLAR ABUNDANCE

FIG. 1.—Solar-system σN_s -curve. The product of the neutron-capture cross-section at kT = 30 keV (in mb) times isotopic abundance (Si = 10⁶) is plotted versus atomic mass number A. The solid line is a calculated curve corresponding to an exponential distribution of integrated neutron flux.

111

Seagar, Fowler, and Clayton 1965

steady state:

$$\frac{dN_A}{d\tau} = -n_A\sigma_A + n_{A-1}\sigma_{A-1} = 0$$

Our sun as a Red Giant star in 4.5 Gy

The Sun as a red giant (diameter a 2 AU)

R-PROCESS CONSIDERATIONS

- if neutrons are to produce the r-process nuclei then β -decay must be responsible for the increase in proton number along the r-process path
- protons would combine with neutrons and end up in helium.
- neutron density must be high because the abundances themselves indicate a path that is very neutron-rich and because only very neutron-rich nuclei have sufficiently short β-decay lifetimes to decay and reach, e.g., Uranium
- beta decay lifetimes of neutron- ich nuclei become increasingly short due to large Q-value for decay

the lifetime goes roughly as the available energy to the fifth power

- typical time for the total r-process is just a few seconds
- Neutron rich nuclei have smaller neutron capture cross sections because Qn decreases, eventually approaching zero

R-PROCESS AND S-PROCESS

closed neutron shell

The r-process elements are created when the neutron rich elements undergo beta decay.

HOW IT WORKS

- The r-process proceeds by rapidly capturing neutrons while keeping Z constant, until a"waiting point" is reached.
- At the waiting point(s), photo-neutron ejection (photo-disintegration) balances neutron capture.
- At zero temperature, the waiting point would be the neutron drip line
- (Sn≤0), but the r-process actually happens at high temperature
- (a necessary condition to obtain the high neutron density)
- At the waiting point (or points), beta decay eventually happens creating Z+1.
- Neutron capture continues for that new element until a new waiting point

is found.

STEADY-FLOW APPROXIMATION

^{122,124}Sn: shielded from s-process, only produced in r-process, ~5% rel. abund.

¹²⁰Sb: produced in r and s process, 32% rel. abund.

^{122,123,124}Te: shielded from r-process, only produced in s-process

The r (rapid neutron capture) - process

HOW IT WORKS

- The r-process proceeds by rapidly capturing neutrons while keeping Z constant, until a"waiting point" is reached.
- At the waiting point(s), photo-neutron ejection (photo-disintegration) balances neutron capture.
- At zero temperature, the waiting point would be the neutron drip line
- (Sn≤0), but the r-process actually happens at high temperature
- (a necessary condition to obtain the high neutron density)
- At the waiting point (or points), beta decay eventually happens creating Z+1.
- Neutron capture continues for that new element until a new waiting point

is found.

¹⁸¹Ta: stable

rarest element on earth 180 Ta ground state: decays in 8h 180 Ta^m: T_{1/2} > 10¹⁵ y, metastable shielded from s process shielded from r process 0.01% of 181 Ta

P. v. Neumann-Cosel Nuclear Physics A719 (2003) 21c-28c, Sharon Weinberger, Imaginary Weapons.

SOLAR ABUNDANCES - KEY FACTS

⁹⁸Tc: life time 4.2 My

¹⁴⁵Pm: life time 17.7a

^{181,180}Ta: (meta)stable

NUCLEOSYNTHESIS - DOMINANT PROCESSES

SUPERNOVA SN1987A

Source: ESO Schmidt Telescope

Feb. 23, 1987 type II supernova Large Magellanic Cloud 168 000 light years

25 neutrinos detected within 13 seconds Kamiokande II: 12 (anti)-neutrinos IMB: 8 (anti)-neutrinos Baksan: 5 (anti)-neutrinos

from time-of-flight of neutrinos: ν -mass < 16 eV

neutrinos are stable !

10⁵⁸ neutrinos from β-decay

NUCLEOSYNTHESIS SOURCES OF THE ELEMENTS

Fig. 1. Nucleosynthetic sources of elements in the Solar System. Each element in this periodic table is color-coded by the relative contribution of nucleosynthesis sources, scaled to the time of Solar System formation. Only elements that occur naturally in the Solar System are shown; artificially made elements and elements produced only through radioactive decay of long-lived nuclei are shown in gray. The data plotted in this figure are available in table S1.

Science 01 Feb 2019: Vol. 363, Issue 6426, pp. 474-478

SEARCH FOR THE ISLAND OF STABILITY

Where and how was gold cooked?

EXISTING AND FUTURE FACILITIES

BACKUP

SHIELDING

Burbidge, Burbidge, Fowler, Hoyle: Rev. Mod. Phys. 29 (1957) 547.

MEASUREMENT OF BETA DECAY HALF LIVES BEYOND N=126

ipole:

$$\frac{nv^2}{r} = q \cdot (\overrightarrow{v} \times \overrightarrow{B}) \rightarrow \frac{m \cdot v}{Z \cdot e} = B \cdot r$$

 $4\pi nz^2$ time-of-flight: v

ROLE OF BETA DELAYED NEUTRON EMISSION

neutron rich nuclei can emit one or more neutrons if $S_n < Q_\beta$

if some fraction of of β -decays end up in daughter nucleus being excited above neutron threshold S_n, then some fraction P_n of the decays will emit a neutron.

ROLE OF BETA DELAYED NEUTRON EMISSION

MEASUREMENT OF BETA DECAY HALF LIVES BEYOND N=126

β-delayed neutrons in ³He counters

heaviest species where neutron emission has been observed so far.

challenge to microscopic and phenomenological models