NUCLEAR STRUCTURE NEAR THE DRIPLINES

Kai Schweda

Outline

Chiral effective field theory Neutron drip line Charge radii Future facilities

NUCLEAR CHART

BRIEF HISTORY

1930's Chadwick (1932) neutron Heisenberg (1932) isospin Yukawa (1935) meson hypothesis

1940's Discovery of the pion in cosmic rays (1947) and in the Berkeley Cyclotron Lab (1948)

1950's One-Pion-Exchange (OPE) models Multi-pion exchanges

1960's many pions = multi-pion resonances $\sigma(600), \, \rho(770), \, \omega(728)$ one-boson-exchange model

BRIEF HISTORY

1970's Refined meson theories Sophisticated models for two-pion exchange Paris potential, Bonn potential, Argonne potential

1980's nuclear physicists discover QCD quark cluster models

1990's nuclear physicists discover Effective Field Theory (EFT) Steven Weinberg

NUCLEON-NUCLEON FORCE

 $1/M(\rho) \approx 0.2$ fm

TENSOR FORCE $(-S_{12}) = -3(\overrightarrow{\sigma_1} \cdot \hat{r})(\overrightarrow{\sigma_2} \cdot \hat{r}) + \overrightarrow{\sigma_1} \cdot \overrightarrow{\sigma_2}$ Attractive Repulsive

source: APS Otsuka, T et al., Phys. Rev. Lett. 104, 012501 (2010), Fujita J, Miyazawa H. Prog. Theor. Phys. 17:360 (1957).

GENERAL TWO-BODY POTENTIAL

1

YUKAWA POTENTIAL AND CONTACT INTERACTION

Potential:
$$V(r) = -\frac{g^2}{4\pi} \frac{e^{-mr}}{r}$$

Propagator:
$$P(Q) = \frac{1}{Q^2 + M^2}$$

If $M \gg Q$, spatial structure not resolved \rightarrow contact interaction

CHIRAL EFFECTIVE FIELD THEORY

Chiral momenta $Q \sim 1/\lambda \sim m_\pi$

Hard scale: $\Lambda = m_{\rho}$

Expand in powers of: $Q/\Lambda < 1$

$$H(\Lambda) = T + V_{NN}(\Lambda) + V_{3N}(\Lambda) + V_{4N}(\Lambda) + \dots$$

3N forces: fit binding energy and half life of ³H or binding energy of ³H and charge radius of ⁴He

CHIRAL EFFECTIVE FIELD THEORY FOR NUCLEAR FORCES

At higher orders, many-body forces occur naturally.

3-NUCLEON FORCES UP TO N³LO

Shaded vertices denote the amplitudes of the corresponding pion/nucleon interactions.

- (a) 2π exchange
- (b) 1π -contact
- (c) 3N contact
- (d) 2π - 1π exchange
- (e) ring contributions
- (f) 2π -contact
- (g) relativistic corrections

REMINDER: NUCLEAR SHELL MODEL

NEUTRON DRIPLINE ON OXYGEN ISOTOPES

repulsive 3N forces correctly predict neutron dripline at $^{24}_{8}$ O

SPECTROSCOPY

NEIGHBORING OPEN-SHELL NUCLEI

1 additional proton in ₉F binds 6 more neutrons

NEUTRON RICH CALCIUM ISOTOPES

magic numbers at N=28 and N=32 and N=34

 ⁴⁹Ca

ISOLDE, CERN, Nature Physics 12, 594-598 (2016).

CHARGE RADII

little change from N=20 to N=28 dramatic change for N>28 due to core-break up of the protons well described by theory using 3N forces

NICKEL ISOTOPES

Phys. Rev. Lett. 128, 022502 (2021) https://arxiv.org/abs/2112.03382

FIG. 2. Nuclear charge radii R_c and differentials $\delta \langle r_c^2 \rangle^{60,A}$ of Ni isotopes with respect to ⁶⁰Ni as reference. Experimental data are compared to theoretical results. See text for details.

			14F	15F 1.0 MeV	16F 40 KeV	17F 64.49 S	18F 1.8291 H	19F STABLE	20F 11.07 S	21F 4.158 S	22F 4.23 S	23F 2.23 S	24F 390 MS	25F 50 MS	26F 9.6 MS	27F 5.0 MS	28F <40 NS	29F 2.5 MS	30F <260 NS	31F >250 NS
			Р	P: 100.00%	P: 100.00%	e: 100.00%	e: 100.00%	100%	β-: 100.00%	β-: 100.00%	β-: 100.00% β-n < 11.00%	β-: 100.00%	β-: 100.00% β-n < 5.90%	β-: 100.00% β-n: 14.00%	β-: 100.00% β-n: 11.00%	β-: 100.00% β-n: 77.00%	N	β-: 100.00% β-n: 100.00%	N	β- β-n
		120 0.40 MeV	130 8.58 MS	140 70.606 S	150 122.24 S	160 STABLE 99.762%	170 STABLE 0.038%	180 STABLE 0.200%	190 26.88 S	200 13.51 S	210 3.42 S	220 2.25 S	230 82 MS	240 65 MS	250 <50 NS	260 <40 NS	270 <260 NS	280 <100 NS		
		Р	εp= 100.00% ε: 100.00%	e: 100.00%	e: 100.00%	<i>33.102</i> /k	0.000%	0.200%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00% β-n < 22.00%	β-: 100.00% β-n: 31.00%	β-: 100.00% β-n: 58.00%	N	N	N	N		
	10N	11N 1.58 MeV	12N 11.000 MS	13N 9.965 M	14N STABLE 99.634%	15N STABLE 0.366%	16N 7.13 S	17N 4.173 S	18N 624 MS	19N 271 MS	20N 130 MS	21N 85 MS	22N 24 MS	23N 14.5 MS	24N <52 NS	25N <260 NS				
	P: 100.00%	P: 100.00%	e: 100.00%	e: 100.00%	00.004/0	0.000/0	β-: 100.00% β-α: 1.2E-3%	β-: 100.00% β-n: 95.1%	β-: 100.00% β-n: 14.30%	β-: 100.00% β-n: 54.60%	β-: 100.00% β-n: 57.00%	$\begin{array}{c} \beta \text{-:} \ 100.00\% \\ \beta \text{-n:} \ 81.00\% \end{array}$	β-: 100.00% β-n: 36.00%	β-: 100.00% β-n	Ν	N				
8C 230 KeV	9C 126.5 MS	10C 19.290 S	11C 20.334 M	12C STABLE	13C STABLE	14C 5700 Y	15C 2.449 S	16C 0.747 S	17C 193 MS	18C 92 MS	19C 49 MS	20C 14 MS	21C <30 NS	22C 6.1 MS						
P: 100.00% d	є: 100.00% єр: 61.60%	e: 100.00%	e: 100.00%	50.05%	1.11%	β-: 100.00%	β-: 100.00%	β-: 100.00% β-n: 99.00%	β-: 100.00% β-n: 32.00%	β-: 100.00% β-n: 31.50%	β-n: 61.00% β-	β-: 100.00% β-n: 72.00%	N	β-: 100.00% β-n: 61.00%						

Source: Wikipedia

PREDICTIONS FROM THEORY

 \rightarrow Facility for Rare Isotope Beams (FRIB), Michigan, USA (2022); FAIR, Darmstadt (2025).

FACILITY FOR ANTIPROTON AND ION RESEARCH (FAIR)

Start: 2025 Nuclear structure astrophysics Neutron stars Antimatter research Atomic plasma physics and applications

Also: Facility for Rare Isotope Beams (FRIB), Michigan, USA (2022).

EXTRA SLIDES

BEYOND THE NEUTRON DRIPLINE

MAGNETIC MOMENT AND ELECTRIC QUADRUPOLE MOMENT

