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The early history of the universe is disc
density of particle states.

There are now plausibe theoretical models'
for the thermal history of the universe back to
the time of helium synthesis, when the temper-
ature was 0.1 to 1 MeV. Our present theoretical
apparatus is really inadequate to deal with much
earlier times, say when T~100 MeV, and in lieu
of any better ideas it is usual to treat the matter
of the very early universe as consisting of a
number of species of essentially free particles.
But how many species?

At one extreme, it might be assumed that the
number of particle species stays fixed (perhaps
just quarks, antiquarks, leptons, antileptons,
.photons, and gravitons). In this case, the tem-
perature T will vary with the cosmic scale fac-
tor' R(t) according to the relation T ~ 1/R. The
present universe should then contain various
relics of the early inferno: There sould be a
1 K blackbody gravitational radiation, ' if TR
stayed roughly constant between the times that
the gravitons and the photons decoupled from the
rest of the universe; also, according to Zeldo-
vich, 4 the leftover quarks should be about as
common as gold atoms. The gravitational radia-
tion would not have been seen, but the quarks
would have been, unless, of course, quarks do
not exist.

At the other extreme, one might assume that
the number of species of particles with mass
between m and m+dm increases as m- ~ as fast
as possible:

—B gpm
N(m)dm-Am e ' dm.

If N(m) increased any faster, the partition func-
tion would not converge. With the increase (1),
the partition function converges only if the tem-
perature' is less than 1/p, . The quantity T, =1/—
p, is thus a maximum temperature for any sys-
tem in thermal equilibrium.

Support for this latter sort of model comes
from two quite different directions:

(1) The transverse momentum distribution of
secondaries in very high energy collisions is
observed to be roughly exp(- ~P, ~/160 MeV).
Hagedorn' interprets this distribution in terms
of a statistical model with Tp 160 MeV and

ussed in the context of an exponentially rising

B=—5

(2) If particles fall on families of parallel lin-
early rising Regge trajectories, their masses
take discrete values m„m„. ~ ~, where

Qmn +Qp Ã

Here n'=1 GeV ' is the universal Regge slope
and np is a number, of order unity, character-
izing the family. The extension of the Veneziano
model' to multiparticle reactions requires' that
the number of particle states with mass m„
equals the degeneracy of the eigenvalue n of the
operator

Q }'tata~, (3)
p =1 jh~1

where a„~ and a» are an infinite set of annihila-
tion and creation operators. For n- ~, this
number is'

(D/24)& + )I' -&o+'&«
nD

x exp(2~(-,'Dn)' 'J. (4)

Equations (2) and (4) lead to an asymptotic level
density of form (1), with

p, = 2v(-,'Da')'~', B= ,'(D+ 1). —

The value of D is not certain —originally Fubini
and Veneziano' had D=4, but Lovelace" argues
that D is larger, possibly D=5.

Table I summarizes the values of Tp and B for
these various models. Lovelace" has emphasized
the striking agreement between the values of Tp
derived in such different ways. We now see that

Table I. Possible values of the parameters in the
level-density formula (1).

T0 —=1/p,

-160 MeV

Model

(1) Hagedorn'
(2} Ueneziano (with n'=1 GeU )

D=4
D=5
D=6
D=7

180 MeV
174 MeV
159 MeV
147 MeV

2

3
2

Ref. 8.Ref. 6.
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even the values of B are the same, or nearly so.
In addition, the Veneziano model approximates
the hadronic 8 matrix as a sum over narrow
resonances, and since all these resonances are
included in (1), it is perhaps not unreasonable to
igQore their interactioIls. All of this leads Qs

to suspect that a free-particle model with level
density (1) may not be a bad approximation at
high temperature.

I et us first apply this model to the relatively
simple case of a universe with zero net baryon
number. " In an adiabatic expansion, the only
conserved quantity is the entropy per unit co-
ordinate volume, "

s = (p+ p)B'/T,

where p and p are the pressure and the density
of energy per unit proper volume. By integrat-
ing the usual Fermi and Bose distribution func-
tions over m with weighting function (1), we find,

T~ Toq

(T T,)' -~' for-B.~„

(ln(T-T, )j for B=-,'.
For B&z, p is finite even at p= po. The asymp-
totic behavior of the pressure is the same, ex-
cept that B is replaced with B+1, so that p «p
for B ~-,'. Hence, for B ~-', , Eq. (6) requires

and for the entropy per baryon

o =s/v= [p+p-pn~]/n~T. , (1o)

where p, is the baryonic chemical potential. In
order to keep (9) constant as 8-0, we must
have p. - ~ or T- T, or both. There is no way
that (10) can be kept constant if T- T„either
with p, constant or p(T T,) cons—tant. However, '

a solution does exist ln which T RpproRches R

finite value less than T, as p, - ~. The integrals
for p, p, and n~ are dominated in this limit by
the contllbutlon frolTl wlthln R finite dlstRnce of
the Fermi surface at energy p. , Rnd we find

that T should approach T, according to

Ri~ ~f rB
T —Tcc ~

I exp(const/R') for B=~.

However, for B&~2 there is no way that (6) can
remain constant in the limit 8-0. If we take
our model seriously, then for zero baryon num-
ber and B&-,', thermal equilibrium becomes im-
possible when R (t) is less than some small but
finite value.

Now let us consider the effect of a nonzero
net baryon-number density n~. %e now have
two conservation laws, for the baryon number
per unit coordinate volume"

p -A 'e "~'Op'~' 'T csc(v T/T)6+ (~T/p)(B-2) cot(vT/T. )+ (3T,/2V)(B-4)+ 0(u ')~,

p -A'e" roy, ' ' T csc( vT/T)/T /p+ O(p ')}
n~-A'e "~roIJ.'~' sTcsc(wT/T, )(l+(mT/p)(B- 2) tc(os/T, -) (+3T,/2p)(B- —,')+0(p ')J,

where A' = (T,'/Bg)'~'A. The specific entropy
(10) then approaches a limit,

o- (T,/T)-scot(mT/T, )+0(p, '). (14)

The observed values of the present blackbody
radiation temperature and baryon number den-
sity indicate" that o is large, roughly of order
10'. Equation (14) then requires that as B- 0,
the temperature approaches a value T with

(T,-T')/T, = 1/o= 1O '.
It is somewhat of a mystery why 0 is so large.
Unfortunately, Eq. (14) only replaces this mys-
tery with another one: Why does the universe
begin with a temperature so very close to To~

The baryon conservation law (9), together with

(13), gives the growth of p, as R- 0,

~ —3T, [im ~+ O(in ~i~ ~).

The mean square particle velocity then vanishes
for 8-0 like

(u') - 3p/p - 3T,/p - 1/~lnR~.

Since the energy density is dominated by non-
relRtlvlstlc particles we expect stability RgRlnst
local gravitational collapse, as for a polytrope
with y =-', . A peculiar feature of these results
is that the mean particle mass becomes much
larger than the temperature,

(m)- p/n~- p-3T, )lnR/. (16)

The behavior of R(t) as f-0 (defined as the time
when R =0) is given here by Einstein's equations

t'~'
~l t ~'~',

instead of the behavior R cc P~' or R ~ t'~' ex-
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pected in a Friedmann or a Tolman model.
A curious tentative view of cosmic history

emerges from these considerations: (I) From
the present back to when T= 1 eV, the energy
density p has been dominated by nonrelativistic
baryons. (2) Between T= 1 MeV and T= i eV,
p was dominated by photons. (3) Between T
= 0.9T, and T= 1 MeV, p was dominated by lep-
tons, antileptons, and photons. (4) Between
T,-T= 10 'T, and T=0.9T„p was dominated
by nonrelativistic mesons, baryons, and anti-
baryons, the latter two in nearly equal numbers.
(5) At earlier times, p was dominated, once
again, by nonrelativistic baryons t The transi-
tion between eras (3) and (4), and eras (4) and
(5), will be studied numerically in a future pub-
lication.
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