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5.1 Gravitational binding energy of a neutron star (1 Point)

Assume a neutron star with radius rns = 10km and mass mns = 1.5 ·Msun, with Msun being the mass of

the sun.

a) Calculate the gravitational energy of this neutron star assuming a uniform and homogeneous sphere.

b) Calculate the gravitational energy per nucleon and compare your result to the average nuclear

binding energy.

c) Compare the density of a neutron star to normal nuclear matter of ρnuclear ≈ 0.17nucleons/fm3.

Hint : For this problem, use SI units as an exception.

Solution:

a) ρ = constant, ρ = mns/V = mns/(4/3 ·πr
3
ns)

The change in potential energy when bringing an infinitely thin layer of mass from infinity to an

existing volume of mass with radius r is:

dW = −Gρ · 4/3πr3 · r2ρ · 4πdr = −G16π2

3
· ρ2r4dr.

Integrating over r = 0...r = rns gives

W = −Gρ
2 · 16π2

15
· r5ns

Inserting ρ from above results in

W = −G16π2

15
· r5ns ·

9m2
ns

16π2 · r6ns

W = −3

5
·Gm

2
ns

rns

G = 6.67 · 10−11 m
3

kg · s2 , Msun = 2 · 1030kg.

W = 3
5 · 6.67 · 10−11 m

3

kg · s2 · (3 · 1030kg)2/104m = 3.6 · 1046J.

b) 1u = 1.66 · 10−24g

nnucleons = 3 · 1030kg/1.66 · 10−24g = 1.8 · 1057.

Gravitational energy per nucleon = 3.6 · 1046J/1.8 · 1057, 1 Joule = 6.24 · 10+12MeV.

Gravitational energy per nucleon = 3.6/1.8 · 6.24 · 10MeV = 125 MeV per nucleon, nuclear binding

energy ≈ 8 MeV per nucleon.

c) ρns = 1.8 · 1057/(4/3 ·πr3ns) = 1.8 · 3
4π

10
57

10
3 · 109 · 1045fm3 ≈ 0.5nucleons/fm3 ≈ 3 · ρnuclear.

5.2 Extension of the liquid drop model (1 Point)

The liquid drop model can be extended to apply it to neutron stars. For this purpose, a term BG is

added to the binding energy that describes the gravitational attraction for very large neutron numbers:



BG =
3

5

G ·m2
n

r0
A5/3,

with the gravitational constant

G = 6.7 · 10−39 1

(GeV)2
,

the neutron radius r0 = 0.88fm and the mass mn = 0.9396GeV of the neutron.

Estimate the minimum number of neutrons N a neutron star must posses in order to be stable against

strong decay.

Hint : Use the approximation A = N and Z = 0 for very large values of N . Use the stability criterion

that the binding energy is positive.

Solution:

With A ≈ N and Z ≈ 0 only the volume term and the symmetry term remain. The binding energy must

be positive in order for the neutron star to be stable against strong decay.

B = bv ·N − bsym ·N + 3
5
GM

2

r0
A5/3 > 0.

N >

(
5

3

(bsym − bv)r0
GM2

)3/2

=

(
5

3
· (23.2− 15.85) · 0.88

6.7 · 10−39 · 197 · 0.93962

)3/2

= 2.8 · 1055.

N.B. BG = 7.945 · 10−37N5/3.

5.3 Chandrasekhar mass limit from dimensional analysis (1 Point)

Electron degeneracy creates a barrier to the gravitational collapse of dying stars and is responsible for

the formation of white dwarfs. In the ultra-relativistic limit, the total energy Et of the electrons is given

by Et = N · 35EF = N · 35
(

3π2 · NV
)1/3

, with N the number of electrons, V the volume of the white dwarf,

and EF the Fermi energy of the electrons. The Fermi pressure is derived by Pe = − ∂E∂V ∼
(
N
V

)4/3
.

In the following, we perform a dimensional analysis, e.g. we neglect constant factors such as

3/5, 4π, 3π2, etc.

a) Estimate the gravitational self-pressure at the surface by considering the gravitational force at the

surface divided by the surface area, i.e. Pg = Fg/A.

b) Set this gravitational self-pressure equal the Fermi pressure and solve it for the mass. Express

your result in terms of the proton mass mp and the Planck mass mPlanck =
√

1
G , with G the

gravitational constant.

Hint: Since the system is electrically neutral, the number of electrons equals the number of protons.

Assume that all mass M of the star is made up by protons.

c) Why does your result not depend on the electron mass?

d) Report your result in terms of the solar mass Msun.

e) The critical mass for gravitational collapse is associated with the onset of relativistic degeneracy,

EF = pF · c ≥ mec
2. Use the formula for the Fermi energy EF given above to estimate the critical

radius of a white dwarf.

Solution:
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a) Pg = Fg/A ∼ G ·M2

R
2 · 1

R
2 = G ·M2

R
4 .

b) G ·M2

R
4 =

(
N
V

)4/3
, V = 4/3π ·R3. The number N of electrons equals the number of protons, since

the system is electrically neutral. N = M
mp
.

G ·M2

R
4 = 1

R
4
M
mp

4/3

M2/3 = 1
G/m

4/3
p |( )3/2

M =

(
1

G

)3/2

/m2
p

M = m3
Planck/m

2
p

N.B. The core usually consists of 12C or 16O nuclei and thus the mass of the white dwarf is twice

the number of protons times the proton mass. This would lead to factor of 1/2 in the number of

electrons, which is neglected here.

c) In the ultra-relativistic limit, EF =

√
m2
e · c

4 + p2e · c
2 ≈ pe · c.

d)

M =
(2.2 · 10−8)3

(1.67 · 10−27)2
kg = 3.82 · 10−30kg = 1.91 ·Msun.

Precise result, including radiation pressure: M = 1.39 ·Msun.

e)
(
N
V

)1/3 ≥ mec
2.

1

mec
2 ≥, from above N = M

mp
= m3

Planck/m
3
p, V ∼ R

3.

R ≤ mPlanck

mec
2mp

Inserting numbers results in

R ≤ 200MeV · fm · 1.22 · 1019GeV/(0.5MeV · 0.938GeV) = 200 · 1.22/(0.5 · 0.938) · 104m = 5200km.

When the mass is higher than the critical mass, the star shrinks below the critical radius and

collapses to form a neutron star or black hole.
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