Recitation 3 – Moderns Aspects of Nuclear Physics – SS22

Discussion on Fr., June 3, 2022, 11:15

3.1 Parity, C-, and G-parity in the $q\bar{q}'$ system (1 Point)

Consider the operators for parity inversion **P**, charge conjugation **C**, and G-parity $\mathbf{G} = \mathbf{C} \cdot e^{i\pi I_2}$ with eigenvalues $P, C, \eta_G = \pm 1$. Here, I_2 is the second component of the isospin vector \vec{I} .

- a) Apply the charge conjugation operator **C** to the pion multiplet, i.e. π^+, π^0, π^- . Which states are eigenstates?
- b) Apply the charge conjugation operator **G** to the pion multiplet, i.e. π^+, π^0, π^- . Which states are eigenstates?
- c) Check that the relation for the eigenvalues $\eta_G = (-1)^{S+L+I}$ of the G-parity operator holds for the pion multiplett.
- d) Consider states where the relationship $P = (-1)^J$ holds. Which spin S must these states posses?
- e) Which values for the product CP of the above states are allowed?
- f) Consequently, which states are forbidden? List three of them.
- g) Look up the values $I^G(J^{PC})$ for the $\eta(0.549)$ meson, e.g. in the online version of the particle data book. Why is the decay into 3 pions not allowed in strong interactions? Why is the decay of the $\eta(0.549)$ meson into 2 pions not observed at all?

N.B. The flavor wave function of the $\eta(0.549)$ meson is given by $\frac{1}{\sqrt{6}}(u\bar{u} + d\bar{d} - 2s\bar{s})$, while for the π meson and ρ meson it is given by $\frac{1}{\sqrt{2}}(u\bar{u} - d\bar{d})$.

Solution:

a) $C = (-1)^{L+S}$, for the pions L = S = 0.

$$\mathbf{C} \begin{cases} \pi^{+} \\ \pi^{0} \\ \pi^{-} \end{cases} = \begin{cases} \pi^{-} \\ \pi^{0} \\ \pi^{+} \end{cases}$$
(1)

Only neutral particles can be eigenstates of the C operator, i.e. the neutral pion has eigenvalue C = +1.

b) $e^{i\pi I_2}$ is an additional rotation in isospin by multiples of π around the I_2 axis. The pions form an isospin triplet, i.e. $I = 1, I_3 = 1, 0, -1$.

$$\mathbf{G} \begin{cases} \pi^{+} \\ \pi^{0} \\ \pi^{-} \end{cases} = - \begin{cases} \pi^{+} \\ \pi^{0} \\ \pi^{-} \end{cases}$$
(2)

The minus sign enters through the rotation in isospin, e.g., the isospin component of the wave function can be described by the spherical harmonics $Y_{l=1}^{m=1,0,-1}$. A rotation of 180 degrees about the *x*-axis corresponds to $\theta \to \pi - \theta, \phi \to \pi - \phi$. Thus $Y_{l=1}^{m=1,0,-1} \to (-1)^{I} Y_{l=1}^{m=1,0,-1}$. $\pi^{0}: I^{G}(J^{PC}) = 1^{-}(0^{-+})$ $\pi^{\pm}: I^{G}(J^{P}) = 1^{-}(0^{-})$

- c) $\eta_G = (-1)^{S+L+I} = (-1)^{0+0+1} = -1$
- d) From the lecture: $P = (-1)^{L+1}$. Thus states with $P = (-1)^J$ must have spin S = 1. In case S = 0, it follows that J = L and $P = (-1)^{J+1}$ and does violate the initial assumption.
- e) $C = (-1)^{L+S}, P = (-1)^{L+1}.$ $CP = (-1)^{2L+2} = +1$
- f) Consequently, states with $P = (-1)^J$ and CP = -1 are forbidden. These are $J^{PC} = 0^{+-}, 1^{-+}, 2^{+-}, 3^{-+}, \dots$
- g) $\eta(0.549): I^G(J^{PC}) = 0^+(0^{-+})$

strong decay into three pions:

 $\eta(0.549)$ has G = +1, the pions have G = -1. G is a multiplicative quantum number and thus needs an even number of pions in the final state, since G-parity is conserved in strong interactions. decay into two pions:

 $\eta(0.549)$ has P = +1, the pions have P = -1. In order to conserve parity, the pions must carry relative orbital momentum with an odd quantum number l = 1, 3, 5, ... However, the $\eta(0.549)$ has total angular momentum J = 0, so do the pions. Thus, only l = 0 allowed. Therefore, no decay two two pions is allowed in strong and electromagnetic interactions.

3.2 Liquid drop formula (1 Point)

- a) Consider the liquid drop formula. At a given mass number A, estimate the number of protons Z_{\min} where the atomic mass m(Z) reaches a minimum. Neglect the pairing energy. Draw your result in the $Z_{\min}(N)$ plane, where $N = A Z_{\min}$. Also, draw a line N = Z.
- b) Draw the nuclear binding energy B(A, Z)/A as a function of the mass number A. Use the result $Z = Z_{\min}$ from a). In what mass range does B(A, Z)/A reach a maximum?

Solution:

Hint: In the literature, there are two slightly different terms for the asymmetry term, once using $(N-Z)^2$, and once using $(Z - A/2)^2$. This prefactor in the latter definition is a factor of 4 larger. Here, we use the former definition as given in the lecture with $a_{sym} = 23.3$ MeV.

The mass formula reads:

$$M(A,Z) = Z \cdot m_H + (A-Z) \cdot m_n - B(A,Z)$$
, with the binding energy from the liquid drop model

$$B(A,Z) = a_V A - a_O A^{2/3} - a_C \frac{Z^2}{A^{1/3}} - a_{\text{sym}} \frac{(N-Z)^2}{A} + \frac{\delta}{A^{1/2}}.$$

Since A = const., express N trough A, Z.

$$B(A,Z) = a_V A - a_O A^{2/3} - a_C \frac{Z^2}{A^{1/3}} - a_{\rm sym} \frac{(A-2Z)^2}{A} + \frac{\delta}{A^{1/2}}.$$

a) We take the partial derivative of the mass formula with respect to Z and determine the proton

number $Z_{\rm min}$ where the derivative vanishes.

$$\frac{\partial m(Z,A)}{\partial Z} = m_H - m_n + \cdot a_{\text{sym}} \cdot \frac{-4(A-2Z)}{A} + 2a_C \frac{Z}{A^{1/3}} \tag{3}$$

$$= m_H - m_n + a_{\rm sym} \cdot \frac{-4A + 8Z}{A} + 2a_C \frac{Z}{A^{1/3}} \tag{4}$$

$$= m_H - m_n - 4a_{\rm sym} + \left(\frac{8a_{\rm sym}}{A} + \frac{2a_C}{A^{1/3}}\right)Z$$
 (5)

$$= m_H - m_n - 4a_{\rm sym} + 2\left(\frac{4a_{\rm sym}}{A} + \frac{a_C}{A^{1/3}}\right)Z = 0$$
(6)

$$Z_{\min} = \frac{A}{2} \frac{m_n - m_H + 4a_{\text{sym}}}{4a_{\text{sym}} + a_C A^{2/3}}$$
(7)

(8)

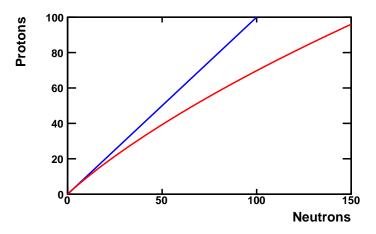
with $m_n - m_H = 0.7$ MeV, $a_C = 0.71$ MeV und $a_{\rm sym} = 23.3$ MeV, it follows

$$=\frac{A}{1.9725+0.01503A^{2/3}}\tag{9}$$

Calculate for a fixed value of A with A = 1 - 300 the value for Z_{\min} with $N = A - Z_{\min}$. One gets the following numbers:

A	$Z_{\min}(N)$	N	element
16	7.7	8.3	$^{16}_{8}\mathrm{O}$
62	28.1	33.9	$^{62}_{28}$ Ni
100	43.5	56.5	$^{100}_{44}\mathrm{Ru}$
208	83.2	124.8	$^{208}_{82}{ m Pb}$

The line of stability (red) sits below the bisecting line (blue), the difference increases with increasing N.

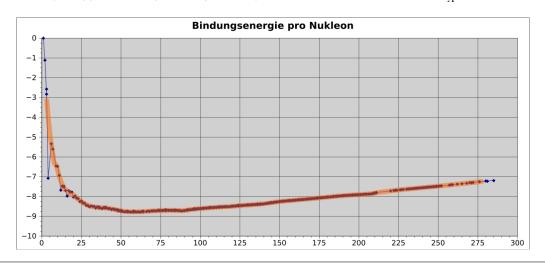


b) Here, the nuclear binding energy is divided by A:

$$\frac{B(Z,A)}{A} = a_V - a_O A^{-1/3} - a_C \frac{Z^2}{A^{4/3}} - a_{\rm sym} \frac{(A-2Z)^2}{A^2}$$
(10)

Now, the result for Z_{\min} from a) is inserted. This results in the plotted curve. The most stable nuclei are located in the mass region $A \approx 60$, as experimentally observed. The most stable nucleus

is ⁶²Ni (http://dx.doi.org/10.1119/1.17828). Hint: The plot shows the $-\frac{B(Z,A)}{A}$ plane.



3.3 Shell model and spin orbit coupling (1 Point)

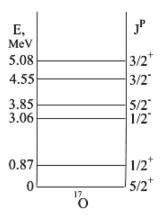
Spin orbit coupling is considered by an additional term $V_{ls} = \text{const.} \cdot (\hat{\vec{l}} \cdot \hat{\vec{s}})$ in the nuclear potential V = V(r). This term leads to a splitting of the otherwise degenerated states with $j = l \pm 1/2$.

a) Show that the contribution ΔE_{jls} to the binding energy due to spin-orbit coupling is

$$\Delta E_{jls} = \frac{a}{2}[j(j+1) - l(l+1) - s(s+1)]$$

with a the spin-orbit coupling constant.

- b) Write down the nucleon configuration of protons and neutrons in the nucleus ¹⁷O in the shell model. What values for spin and parity (J^{π}) do you expect for the ground state of ¹⁷O in the shell model?
- c) Which excited states given in the Figure can be described within the shell model?
- d) Which of the excited states shown is partner to the ground state with identical orbital momentum l? Determine the spin-orbit coupling constant a. Use the energies (E) given in the Figure.



Solution:

a) To calculate ΔE_{LS} one needs to find the matrix element:

$$\Delta E_{jls} = \left< jlsm_j \right| (\vec{l} \cdot \hat{\vec{s}}) \left| jlsm_j \right>$$

Since

$$\hat{\vec{j}}^2 = (\hat{\vec{l}} + \hat{\vec{s}})^2 = \hat{\vec{l}}^2 + 2(\hat{\vec{l}} \cdot \hat{\vec{s}}) + \hat{\vec{s}}^2$$

we can write

$$(\hat{\vec{l}} \cdot \hat{\vec{s}}) = \frac{1}{2}(\hat{\vec{j}}^2 - \hat{\vec{l}}^2 - \hat{\vec{s}}^2)$$

Knowing the eigenvalues of the operators:

$$\hat{\vec{j}}^2 |jls\rangle = j(j+1) |jls\rangle; \quad \vec{l}^2 |jls\rangle = l(l+1) |jls\rangle; \quad \vec{s}^2 |jls\rangle = s(s+1) |jls\rangle$$

we obtain

$$\Delta E_{jls} = \langle jlsm_j | \left(\hat{\vec{l}} \cdot \hat{\vec{s}}\right) | jlsm_j \rangle = \frac{a}{2} [j(j+1) - l(l+1) - s(s+1)]$$

b) The ground state of ¹⁷O corresponds to a single neutron above the closed N=8, Z=8 shell

$$|1s_{1/2}\rangle^4 \, |1p_{3/2}\rangle^8 \, |1p_{1/2}\rangle^4 \, |1d_{5/2}\rangle_n^1$$

Closed shells do not contribute to the orbital momentum, they have l = 0, and parity P = +1. Hence j = 5/2 and $\pi = (-1)^{(l=2)}$: $J^{\pi} = 5/2^+$.

c) The $|1d_{5/2}\rangle$ neutron can be excited to next sub-shells $2s_{1/2}$ and $1d_{3/2}$, which correspond to $1/2^+$ and $3/2^+$ states, respectively.

Discussion: the nature of other states is more complicated. For instance the level $1/2^-$ at 3.06 MeV corresponds to an excitation of a nucleon from $1p_{1/2}$ to $1d_{5/2}$ coupling to the total angular moment j = 0. The spin-parity of the state in this case is determined by the hole in $1p_{1/2}$, that is $J^{\pi} = 1/2^-$.

d) The spin-orbit interaction causes splitting with $j = l \pm 1/2$. In the figure, these are the states $1d_{5/2}$ with E = 0 and $1d_{3/2}$ at E = 5.08 MeV.

$$\Delta E(1d_{5/2}) - \Delta E(1d_{3/2}) = \frac{a}{2} \left[\frac{5}{2} \cdot \frac{7}{2} - \frac{3}{2} \cdot \frac{5}{2} \right] = \frac{5a}{2} = -5.08 \text{ MeV}$$

Hence $a \approx -2$ MeV.