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3.1 Parity, C-, and G-parity in the qq̄
′

system (1 Point)

Consider the operators for parity inversion P, charge conjugation C, and G-parity G = C · eiπI2 with

eigenvalues P,C, ηG = ±1 . Here, I2 is the second component of the isospin vector ~I.

a) Apply the charge conjugation operator C to the pion multiplet, i.e. π
+
, π

0
, π
−

. Which states are

eigenstates?

b) Apply the charge conjugation operator G to the pion multiplet, i.e. π
+
, π

0
, π
−

. Which states are

eigenstates?

c) Check that the relation for the eigenvalues ηG = (−1)
S+L+I

of the G-parity operator holds for the

pion multiplett.

d) Consider states where the relationship P = (−1)
J

holds. Which spin S must these states posses?

e) Which values for the product CP of the above states are allowed?

f) Consequently, which states are forbidden? List three of them.

g) Look up the values I
G

(J
PC

) for the η(0.549) meson, e.g. in the online version of the particle data

book. Why is the decay into 3 pions not allowed in strong interactions? Why is the decay of the

η(0.549) meson into 2 pions not observed at all?

N.B. The flavor wave function of the η(0.549) meson is given by 1√
6
(uū+ dd̄− 2ss̄), while for the

π meson and ρ meson it is given by 1√
2
(uū− dd̄).

Solution:

a) C = (−1)
L+S

, for the pions L = S = 0.

C


π
+

π
0

π
−

=


π
−

π
0

π
+

(1)

Only neutral particles can be eigenstates of the C operator, i.e. the neutral pion has eigenvalue

C = +1.

b) e
iπI2 is an additional rotation in isospin by multiples of π around the I2 axis. The pions form an

isospin triplet, i.e. I = 1, I3 = 1, 0,−1.

G


π
+

π
0

π
−

= −


π
+

π
0

π
−

(2)

The minus sign enters through the rotation in isospin, e.g., the isospin component of the wave

function can be described by the spherical harmonics Y
m=1,0,−1
l=1 . A rotation of 180 degrees about

the x-axis corresponds to θ → π − θ, φ→ π − φ. Thus Y
m=1,0,−1
l=1 → (−1)

I
Y
m=1,0,−1
l=1 .

π
0

: I
G

(J
PC

) = 1
−

(0
−+

)

π
±

: I
G

(J
P

) = 1
−

(0
−

)
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c) ηG = (−1)
S+L+I

= (−1)
0+0+1

= −1

d) From the lecture: P = (−1)
L+1

.

Thus states with P = (−1)
J

must have spin S = 1. In case S = 0, it follows that J = L and

P = (−1)
J+1

and does violate the initial assumption.

e) C = (−1)
L+S

, P = (−1)
L+1

.

CP = (−1)
2L+2

= +1

f) Consequently, states with P = (−1)
J

and CP = −1 are forbidden. These are J
PC

=

0
+−
, 1
−+
, 2

+−
, 3
−+
, ...

g) η(0.549): I
G

(J
PC

) = 0
+

(0
−+

)

strong decay into three pions:

η(0.549) has G = +1, the pions have G = −1. G is a multiplicative quantum number and thus

needs an even number of pions in the final state, since G-parity is conserved in strong interactions.

decay into two pions:

η(0.549) has P = +1, the pions have P = −1. In order to conserve parity, the pions must carry

relative orbital momentum with an odd quantum number l = 1, 3, 5, .... However, the η(0.549) has

total angular momentum J = 0, so do the pions. Thus, only l = 0 allowed. Therefore, no decay

two two pions is allowed in strong and electromagnetic interactions.

3.2 Liquid drop formula (1 Point)

a) Consider the liquid drop formula. At a given mass number A, estimate the number of protons Zmin

where the atomic mass m(Z) reaches a minimum. Neglect the pairing energy. Draw your result in

the Zmin(N) plane, where N = A− Zmin. Also, draw a line N = Z.

b) Draw the nuclear binding energy B(A,Z)/A as a function of the mass number A. Use the result

Z = Zmin from a). In what mass range does B(A,Z)/A reach a maximum?

Solution:

Hint : In the literature, there are two slightly different terms for the asymmetry term, once using (N−Z)
2
,

and once using (Z − A/2)
2
. This prefactor in the latter definition is a factor of 4 larger. Here, we use

the former definition as given in the lecture with asym = 23.3 MeV.

The mass formula reads:

M(A,Z) = Z ·mH + (A− Z) ·mn −B(A,Z), with the binding energy from the liquid drop model

B(A,Z) = aVA− aOA
2/3 − aC Z

2

A
1/3 − asym

(N−Z)
2

A + δ

A
1/2 .

Since A = const., express N trough A,Z.

B(A,Z) = aVA− aOA
2/3 − aC Z

2

A
1/3 − asym

(A−2Z)
2

A + δ

A
1/2 .

a) We take the partial derivative of the mass formula with respect to Z and determine the proton

2



number Zmin where the derivative vanishes.

∂m(Z,A)

∂Z
= mH −mn + · asym ·

−4(A− 2Z)

A
+ 2aC

Z

A
1/3

(3)

= mH −mn + asym ·
−4A+ 8Z

A
+ 2aC

Z

A
1/3

(4)

= mH −mn − 4asym +

(
8asym
A

+
2aC

A
1/3

)
Z (5)

= mH −mn − 4asym + 2

(
4asym
A

+
aC

A
1/3

)
Z = 0 (6)

Zmin =
A

2

mn −mH + 4asym

4asym + aCA
2/3

(7)

(8)

with mn −mH = 0.7 MeV, aC = 0.71 MeV und asym = 23.3 MeV, it follows

=
A

1.9725 + 0.01503A
2/3

(9)

Calculate for a fixed value of A with A = 1− 300 the value for Zmin with N = A−Zmin. One gets

the following numbers:

A Zmin(N) N element

16 7.7 8.3 16
8 O

62 28.1 33.9 62
28Ni

100 43.5 56.5 100
44 Ru

208 83.2 124.8 208
82 Pb

The line of stability (red) sits below the bisecting line (blue), the difference increases with increasing

N .
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b) Here, the nuclear binding energy is divided by A:

B(Z,A)

A
= aV − aOA

−1/3 − aC
Z

2

A
4/3
− asym

(A− 2Z)
2

A
2 (10)

Now, the result for Zmin from a) is inserted. This results in the plotted curve. The most stable

nuclei are located in the mass region A ≈ 60, as experimentally observed. The most stable nucleus
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is
62

Ni (http://dx.doi.org/10.1119/1.17828). Hint: The plot shows the −B(Z,A)
A plane.

3.3 Shell model and spin orbit coupling (1 Point)

Spin orbit coupling is considered by an additional term Vls = const. · (~̂l · ~̂s) in the nuclear potential

V = V (r). This term leads to a splitting of the otherwise degenerated states with j = l ± 1/2.

a) Show that the contribution ∆Ejls to the binding energy due to spin-orbit coupling is

∆Ejls =
a

2
[j(j + 1)− l(l + 1)− s(s+ 1)]

with a the spin-orbit coupling constant.

b) Write down the nucleon configuration of protons and neu-

trons in the nucleus 17O in the shell model. What values for

spin and parity (Jπ) do you expect for the ground state of
17O in the shell model?

c) Which excited states given in the Figure can be described

within the shell model?

d) Which of the excited states shown is partner to the ground

state with identical orbital momentum l? Determine the

spin-orbit coupling constant a. Use the energies (E) given

in the Figure.

Solution:

a) To calculate ∆ELS one needs to find the matrix element:

∆Ejls = 〈jlsmj | (~̂l · ~̂s) |jlsmj〉

Since
~̂j
2

= (~̂l + ~̂s)
2

= ~̂l
2

+ 2(~̂l · ~̂s) + ~̂s
2

we can write

(~̂l · ~̂s) =
1

2
(~̂j

2 − ~̂l2 − ~̂s2)
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Knowing the eigenvalues of the operators:

~̂j
2 |jls〉 = j(j + 1) |jls〉 ; ~l

2 |jls〉 = l(l + 1) |jls〉 ; ~s
2 |jls〉 = s(s+ 1) |jls〉

we obtain

∆Ejls = 〈jlsmj | (~̂l · ~̂s) |jlsmj〉 =
a

2
[j(j + 1)− l(l + 1)− s(s+ 1)]

b) The ground state of
17

O corresponds to a single neutron above the closed N=8, Z=8 shell

|1s1/2〉
4 |1p3/2〉

8 |1p1/2〉
4 |1d5/2〉

1

n

Closed shells do not contribute to the orbital momentum, they have l = 0, and parity P = +1.

Hence j = 5/2 and π = (−1)
(l=2)

: J
π

= 5/2
+

.

c) The |1d5/2〉 neutron can be excited to next sub-shells 2s1/2 and 1d3/2, which correspond to 1/2
+

and 3/2
+

states, respectively.

Discussion: the nature of other states is more complicated. For instance the level 1/2
−

at 3.06 MeV

corresponds to an excitation of a nucleon from 1p1/2 to 1d5/2 coupling to the total angular moment

j = 0. The spin-parity of the state in this case is determined by the hole in 1p1/2, that is J
π

= 1/2
−

.

d) The spin-orbit interaction causes splitting with j = l±1/2. In the figure, these are the states 1d5/2
with E = 0 and 1d3/2 at E = 5.08 MeV.

∆E(1d5/2)−∆E(1d3/2) =
a

2

[
5

2
· 7

2
− 3

2
· 5

2

]
=

5a

2
= −5.08 MeV

Hence a ≈ −2 MeV.
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