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Abstract

We review the impact of nuclear forces on matter at neutron-rich ex-

tremes. Recent results have shown that neutron-rich nuclei become

increasingly sensitive to three-nucleon forces, which are at the forefront

of theoretical developments based on effective field theories of quantum

chromodynamics. This includes the formation of shell structure, the

spectroscopy of exotic nuclei, and the location of the neutron dripline.

Nuclear forces also constrain the properties of neutron-rich matter, in-

cluding the neutron skin, the symmetry energy, and the structure of

neutron stars. We first review our understanding of three-nucleon forces

and show how chiral effective field theory makes unique predictions for

many-body forces. Then, we survey results with three-nucleon forces

in neutron-rich oxygen and calcium isotopes and neutron-rich matter,

which have been explored with a range of many-body methods. Three-

nucleon forces therefore provide an exciting link between theoretical,

experimental and observational nuclear physics frontiers.
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1. INTRODUCTION

Recent studies have shown that three-nucleon (3N) forces play a key role for understanding

and predicting neutron-rich nuclei and for the formation and evolution of shell structure. In

addition, the location of the neutron dripline, where nuclei cease to be bound, is sensitive to

small interaction contributions and therefore to 3N forces. At the same time, 3N forces are

the dominant uncertainty in constraining the properties of neutron-rich matter at nuclear

densities, which is important for the structure of neutron stars. This leads to an exciting

connection of 3N forces with the exploration of extreme neutron-rich nuclei at rare isotope

beam facilities and with forefront observations in astrophysics.

In the following, we discuss our understanding of nuclear forces based on chiral effective

field theory (EFT) and show how this framework makes unique predictions for many-body

forces. In particular, the properties of all nuclei can be predicted up to high order (next-to-

next-to-next-to-leading order, N3LO), with just two new low-energy couplings in many-body

forces. To this order all other three- and four-nucleon (4N) interactions depend on couplings

that are determined from interactions with pions or enter in two-nucleon (NN) interactions.

We discuss theoretical developments of the subleading 3N forces and advances towards

including them in few- and many-body calculations. In Sections 2 and 3, we survey results

with 3N forces in neutron-rich oxygen and calcium isotopes, which have been explored with

a range of many-body methods. These present key regions in the study of the neutron

dripline, of shell structure, and in the spectroscopy of exotic nuclei. In Section 4, we discuss

the impact of nuclear forces on the properties of neutron-rich matter, including the neutron

skin, the symmetry energy, and the properties of neutron stars. Finally, we conclude and

give an outlook with open problems and opportunities in Section 5.
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Figure 1

Chiral EFT for nuclear forces, where the different contributions at successive orders are shown
diagrammatically [figure adapted from (1, 2)]. Nucleons and pions are represented by solid and

dashed lines, respectively. Many-body forces are highlighted in orange including the year they
were derived [3N forces at N2LO (3, 4) and N3LO (5, 6); 4N forces at N3LO (7)]. All N3LO 3N

and 4N forces are predicted parameter-free.

1.1. Chiral EFT for nuclear forces

Chiral EFT provides a systematic basis for strong interactions at momentum scales of

the order of the pion mass Q ∼ mπ based on the symmetries of quantum chromodynamics

(QCD) (1, 2). In chiral EFT, nucleons interact via pion exchanges and shorter-range contact

interactions. The resulting nuclear forces and consistent electroweak operators are organized

in a systematic expansion in powers of Q/Λb, where Λb ∼ 500 MeV denotes the breakdown

scale, leading to a typical expansion parameter Q/Λb ∼ 1/3. The EFT enables controlled

calculations with theoretical error estimates, which is especially important for exotic nuclei

and neutron-rich matter under extreme conditions in astrophysics. Moreover, chiral EFT

connects nuclear forces to the underlying theory through lattice QCD (8, 9).

Generally, nuclear forces are not observable and depend on a resolution scale Λ, so

that the nuclear Hamiltonian is given by H(Λ) = T (Λ) + VNN(Λ) + V3N(Λ) + V4N(Λ) . . .

As shown in Figure 1, at a given order, nuclear forces include contributions from one- or

multi-pion exchanges that govern the long- and intermediate-range parts and from short-

range contact interactions. For each Λ, the scale-dependent short- range couplings are fit

to low-energy data and thus capture all short-range effects relevant at low energies. While

3N forces are not observable, there are natural sizes to many-body-force contributions that

www.annualreviews.org • Neutron-rich nuclei and neutron-rich matter 3
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Figure 2

Different topologies that contribute to 3N forces up to N3LO. The shaded vertices denote the

amplitudes of the corresponding pion/nucleon interactions. The individual diagrams are: (a) 2π

exchange, (b) 1π-contact, (c) 3N contact, (d) 2π-1π exchange, (e) ring contributions,
(f) 2π-contact, and (g) relativistic corrections. Figure taken from Reference (16).

are made manifest in the EFT power counting and which explain the phenomenological

hierarchy of many-body forces, VNN(Λ) > V3N(Λ) > V4N(Λ) (1, 2). The effects discussed in

this review are dominated by the long-range parts of 3N forces and are therefore expected

to be robust. Even though it is tempting to neglect contributions from 3N forces in cases

when calculations based on only NN forces provide a good description of experimental data

[see, e.g., Reference (10)], EFT power counting dictates the inclusion of all many-body

forces up to a given order. In fact, explicit calculations show that 3N forces always provide

important contributions in nuclei and matter (see Sections 2, 3 and 4). The scale dependence

can also be exploited by using the renormalization group (RG) to systematically change the

resolution scale, while preserving low-energy observables. This can be advantageous for

calculations of nuclei and nucleonic matter, because the evolution to lower scales facilitates

the solution of the nuclear many-body problem due to a decoupling of low and high momenta

in the Hamiltonian (11, 12).

1.2. Many-body forces

Chiral EFT opens up a systematic path to investigate many-body forces and their impact

on few- and many-body systems (13). An important feature of chiral EFT is the consistency

of NN and 3N (and higher-body) interactions. This determines the long-range two-pion-

exchange parts of 3N forces at next-to-next-to-leading order (N2LO), with pion-nucleon

couplings c1, c3, c4, leaving only two low-energy couplings cD and cE that encode pion

interactions with short-range NN pairs and short-range three-body physics, respectively (3,

4). To fit cD and cE , different uncorrelated observables are used, e.g., the binding energy

and half life of 3H (14), or the binding energy of 3H and the charge radius of 4He (15).

At the next order, all many-body interactions are predicted parameter-free with many

new structures, as shown in Figure 2. These also depend on the leading NN contact inter-

actions CS , CT (5, 6) [see the 2π-contact contributions (f) and the relativistic corrections

(g)]. Interestingly, for systems of only neutrons, the N2LO cD and cE parts do not con-

tribute because of the Pauli principle and the coupling of pions to spin (17). Therefore,

chiral EFT predicts all three-neutron and four-neutron forces to N3LO.

The leading N2LO 3N forces improve few-body scattering, but interesting open problems

remain (18). This makes the application of 3N and 4N forces at the next order (N3LO) very

exciting. The derivation of N3LO 3N forces has only been completed recently (5, 6), but

no calculation exists for nuclei beyond A = 3, where the current state-of-the-art are N3LO

NN plus N2LO 3N calculations, or consistent calculations at N2LO (see Sections 2 and 3).

The practical calculation of all topologies of Figure 2 in a form suitable for few- and many-

body calculations is a nontrivial task. Due to the large amounts of required computational
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resources, 3N matrix elements so far have only been available in small basis spaces (19).

Recently, a novel and numerically much more efficient method has been developed for

decomposing 3N forces in a plane-wave partial-wave basis (16). The new framework makes

explicit use of the fact that all unregularized contributions to chiral 3N forces are either

local, i.e., they depend only on momentum transfers, or they contain only polynomial non-

local terms. These new developments allow to calculate matrix elements of all N3LO 3N

contributions for large basis spaces required for ab initio studies of nuclei and nucleonic

matter. An important open problem is to fit all NN and 3N low-energy couplings at N3LO

consistently. To this end, it may be beneficial to fit several different few-body observables

simultaneously within theoretical uncertainties, or to include also information beyond few-

nucleon systems in the fits. The exploration of these strategies is currently in progress.

2. NEUTRON-RICH OXYGEN ISOTOPES

With a closed Z = 8 proton shell, the oxygen isotopes provide an exciting laboratory to

study nuclear forces with a range of many-body methods. The oxygen chain also exhibits

remarkable aspects of exotic nuclei. In oxygen, the location of the neutron dripline at

neutron number N = 16 is anomalously close to the stable nuclei [at the same N as for

carbon (Z = 6) and nitrogen (Z = 7)], see Section 2.1. Adding a single proton to oxygen

is able to bind six more neutrons to 31F. As discussed in Section 2.2, oxygen features two

more shell closures in 22O and 24O, where the latter doubly magic nucleus lies just at the

neutron dripline. In recent years, experimental advances have even allowed explorations of

oxygen isotopes beyond the dripline to 26O, see Section 2.3.

In the following, we discuss results for the neutron-rich oxygen isotopes and neighboring

nuclei based on chiral EFT interactions. In particular, the softening of nuclear forces by RG

transformations (11, 12) enabled many new calculations of nuclei with a range of many-body

methods. The results with 3N forces surveyed in this review have been mainly performed

using two different strategies for the Hamiltonian with different RG approaches. The first

uses the RG to evolve NN interactions to low-momentum interactions Vlow k (11). At the NN

level, the results discussed here start from the 500 MeV N3LO potential of Reference (20).

Chiral 3N forces provide a general low-momentum basis, so that the low-momentum NN

interactions have been combined with N2LO 3N forces fit to the 3H binding energy and

the 4He charge radius (15). We will refer to these Hamiltonians as low-momentum NN+3N

forces. Note that similar results are obtained if the RG evolution at the NN level is replaced

by a similarity RG (SRG) evolution (15). The second strategy for the Hamiltonian uses a

SRG transformation applied consistently to chiral NN and 3N interactions (21, 22). The

results discussed in this review start from the same NN potential and include the same

N2LO 3N operators, but with local regulators (23), fit to the binding energy and half life

of 3H (14). We will refer to these Hamiltonians as SRG-evolved NN+3N-full Hamiltonian,

or NN+3N-ind Hamiltonian if the SRG evolution starts only from the NN potential, but

induced (ind) 3N interactions are kept. The latter corresponds to the results for the “bare”

500 MeV N3LO potential, if induced higher-body interactions can be neglected.

Next, we briefly discuss the different ab initio many-body methods used for medium-

mass nuclei. These can be grouped into calculations based on valence-space Hamiltonians

and calculations obtained directly in large many-body spaces. The latter treat all nucleons

as active in a large basis space and rely on different, controlled approximations to solving the

many-body problem of A nucleons. For calculations based on valence-space Hamiltonians,

www.annualreviews.org • Neutron-rich nuclei and neutron-rich matter 5



the number of active degrees of freedom is reduced by treating the nucleus as a many-body

system comprised of a closed-shell core with the additional Av valence nucleons occupying

a truncated valence space. The valence-space Hamiltonian, which is diagonalized exactly,

includes configurations from the large basis space via different many-body methods.

Great advances to access large basis spaces have been made with coupled-cluster (CC)

theory (24). The CC method starts from a closed-shell reference state and includes corre-

lations through a similarity transformation H = e−THeT , where H is the normal-ordered

Hamiltonian. In state-of-the-art calculations the cluster operator T = T1 + T2 + · · · + TA,

which generates particle-hole excitations to all orders, is truncated at the singles and dou-

bles (CCSD) level, T1 + T2, and includes triples excitations, T3, in a nonperturbative but

approximate way. At the CCSD level, T1 and T2 are obtained by solving the CC equations,

which follow from the reference state having no one-particle–one-hole or two-particle–two-

hole excitations. Equations-of-motion CC methods can access ground and excited states of

one- or two-particles-attached and one-particle-removed systems from closed-shell nuclei.

A novel ab initio many-body method is the in-medium similarity renormalization group

(IM-SRG) (25, 26). The IM-SRG uses a continuous unitary transformation U(s), parame-

terized by the flow parameter s, to drive the Hamiltonian to a band- or block-diagonal

form. This is accomplished by solving the flow equation dH(s)
ds

= [η(s), H(s)], where

η(s) = dU(s)
ds

U†(s) is the generator of the transformation. With a suitable choice of η(s),

the off-diagonal part of the Hamiltonian is driven to zero as s → ∞. Similarly to the CC

approach, the IM-SRG decouples the closed-shell ground state from the space of particle-

hole excitations on top of it. Recently, a multi-reference formulation (MR-IM-SRG) was

developed, which enables to describe also ground states of open-shell nuclei (27).

In self-consistent Green’s function theory (SCGF) (28), the quantity of interest is the

single-particle Green’s function, which describes the propagation of single-particle and

single-hole excitations in the many-body system. From this the ground-state energy can

be calculated via the Koltun sum rule (29). The Gorkov formalism (30, 31) allows to treat

pairing correlations explicitly and extends SCGF calculations to open-shell nuclei.

Other calculations of oxygen isotopes in large many-body spaces include the importance-

truncation no-core shell-model (IT-NCSM) (32, 33), which extends an exact diagonalization

with the NCSM by using importance sampling to access larger spaces, and nuclear lattice

simulations (34), which solve the many-body problem of nucleons on a Euclidean space-

time lattice. In lattice EFT, the energies of the ground and excited states are obtained by

propagating the system in imaginary time, as in lattice QCD.

Approaches based on valence-space Hamiltonians allow the calculation of ground and

excited states of all nuclei in the valence space provided that the diagonalization is feasi-

ble (35). Many-body perturbation theory (MBPT) (36) has been used to derive valence-

space Hamiltonians, based on a diagrammatic approach for calculating the single-particle

energies (SPEs) and the interactions between valence nucleons. The MBPT includes the

contributions from configurations outside the valence space perturbatively. State-of-the-art

MBPT results include NN and 3N forces to third order for the valence-space interactions

and the consistent SPEs [see Reference (37) for oxygen isotopes].

Recently, nonperturabtive derivations of valence-space Hamiltonians have been achieved

based on the IM-SRG and CC methods. In the IM-SRG for open-shell nuclei, states with Av
particles in the valence space are additionally decoupled from those containing non-valence

admixtures (38, 39). This gives the energy of the closed-shell core (as in the standard IM-

SRG), but also valence-space SPEs and interactions. In the CC effective interaction (CCEI)

6 K. Hebeler, J. D. Holt, J. Menéndez and A. Schwenk
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Figure 3

Top panel: Ground-state energies of oxygen isotopes measured from 16O, including experimental

values of the bound 16−24O. Figure taken from (42). Energies obtained from (a) phenomenological
forces SDPF-M (43) and USDB (44), (b) a G matrix and including Fujita-Miyazawa 3N forces due

to ∆ excitations, and (c) from low-momentum interactions Vlow k and including N2LO 3N forces

as well as only due to ∆ excitations. The changes due to 3N forces based on ∆ excitations are
highlighted by the shaded areas. Bottom panels: Left: Ground-state energies of oxygen isotopes

relative to 16O based on valence-space Hamiltonians, compared to the atomic mass evaluation

(AME 2012) (45). The MBPT results are performed in an extended sdf7/2p3/2 valence space (37)
based on low-momentum NN+3N forces, while the IM-SRG (39) and CCEI (40) results are in the

sd shell from a SRG-evolved NN+3N-full Hamiltonian. Right: Ground-state energies obtained in

large many-body spaces: MR-IM-SRG (27), IT-NCSM (27), SCGF (29), CC (40), based on the
SRG-evolved NN+3N-full Hamiltonian, and Lattice EFT (34), based on NN+3N forces at N2LO.

approach, a similar decoupling for a given nucleus is achieved using a Lee-Suzuki similarity

transformation from the CC solution in the large basis space to the valence space (40, 41).

2.1. Location of the neutron dripline

The neutron drip line evolves regularly from light to medium-mass nuclei except for a strik-

ing anomaly in the oxygen isotopes, where the dripline is at a doubly magic nucleus 24O and

anomalously close to the stable nuclei. This anomaly is challenging to explain in microscopic

theories based only on NN forces that reproduce NN scattering (42). This is illustrated in

the top panel of Figure 3 with sd-shell calculations based on second-order MBPT [dashed

lines in panels (b) and (c)], where the ground-state energies decrease up to N = 20, leading

to an incorrect dripline at 28O. This is in contrast to phenomenological interactions ad-

www.annualreviews.org • Neutron-rich nuclei and neutron-rich matter 7



justed to experiment, shown in panel (a), which have a minimum at 24O because the d3/2

orbital remains unbound. The comparison shows that NN forces only lead to too attractive

interactions among valence neutrons, which causes the d3/2 orbital to become bound in
24O and beyond. These deficiencies have been traced to the monopole components of the

valence-space Hamiltonian, as these parts are amplified with neutron number, and it has

been argued that 3N forces are important for the monopole components (46). This is also

supported by the cutoff dependence of the monopole components with NN forces only (47).

First investigations of neutron-rich oxygen isotopes with 3N forces (42) have shown that

3N forces lead to repulsive interactions between valence neutrons. This is dominated by

the long-range parts of 3N forces, as highlighted by the results for Fujita-Miyazawa 3N

forces (48) due to ∆ excitations in the top panel (b) and (c) of Figure 3. This results

from the interactions of two valence neutrons with any of the nucleons in the core, which

corresponds to the normal-ordered two-body part of 3N forces, and the repulsive nature

for valence neutrons is rather general (42). The dominance of the normal-ordered two-

body part, which is enhanced by all core nucleons, can be understood based on phase-space

arguments for normal Fermi systems (49) and was verified in explicit calculations (50, 51).

The top panel (c) of Figure 3 shows that N2LO 3N forces, fit to few-nucleon systems only,

predict the dripline correctly. It is interesting to note that the same 3N forces also lead to

repulsion in neutron matter, see Section 4.1.

This repulsive 3N-force mechanism was confirmed in more recent calculations based

on large many-body spaces and with improved MBPT and nonperturbative valence-space

Hamiltonians, as shown in the bottom panels of Figure 3. All results obtained in large many-

body spaces with a SRG-evolved NN+3N-full Hamiltonian (27, 29, 40) (see the bottom right

panel) lead to the correct dripline position at 24O and the different many-body methods

agree within a few percent. With NN+3N-ind forces only (not shown), all oxygen isotopes

are underbound with respect to experiment and bound up to 28O. The results obtained from

ab initio valence-space Hamiltonians are shown in the bottom left panel of Figure 3. The

nonperturbative calculations are in the sd shell, while the MBPT calculations are performed

in an extended sdf7/2p3/2 valence space. In this case, the range of predictions is broader, but

the 3N contributions also lead to an increased repulsion with neutron number. The broader

range here is due to the different Hamiltonians considered (MBPT vs. IM-SRG/CCEI) as

well as due to different many-body approximations.

2.2. Spectroscopy

Next, we discuss excited states in the neutron-rich oxygen isotopes 22,23,24O, which have

been the subject of recent experiments (52, 53, 54, 55, 56, 57). Figure 4 compares the

measured low-lying states with theoretical calculations for each nucleus. We note that the

spectra of neutron-rich oxygen isotopes have also been calculated in CC theory with phe-

nomenological 3N forces adjusted to the oxygen isotopes (3Neff) and including the contin-

uum (58), with good agreement to experiment. In Figure 4, we show only the CCEI results,

as they are based on the same SRG-evolved interactions as in the IM-SRG calculations.

The first oxygen isotope with closed-shell properties for a non-standard magic number,
22O, has its first 2+ state at almost twice the energy as those in 18O and 20O. In contrast

to 24O, whose closed-shell nature can be qualitatively well described with NN forces due

to the large separation between the d3/2 and s1/2 orbitals, the spectrum of 22O is not well

reproduced with NN forces: the first 2+ state is below experiment, and the rest of the

8 K. Hebeler, J. D. Holt, J. Menéndez and A. Schwenk
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Figure 4

Excited-state spectra of 22,23,24O based on NN+3N forces and compared with experiment. Figures

adapted from (39). The MBPT results are performed in an extended sdf7/2p3/2 space (37) based

on low-momentum NN+3N interactions, while the IM-SRG (39) and CCEI (40) results are in the
sd shell from the SRG-evolved NN+3N-full Hamiltonian with ~ω = 20 MeV (CCEI and dotted

IM-SRG) and ~ω = 24 MeV (solid IM-SRG). The dashed lines show the neutron separation energy.

spectrum is generally too compressed. Only when 3N forces are included, the 2+ energy

is in good agreement with experiment. Results with NN+3N forces are shown in Figure 4

for MBPT calculations in an extended sdf7/2p3/2 space (37) or with IM-SRG (39) and

CCEI (40) in the sd shell. For the next excited states, the 2+ − 3+ splitting is somewhat

large in MBPT and results in an inversion of the 3+ and 0+ states and a too-even spacing

of the other levels. This is not the case for IM-SRG and CCEI, where the level ordering is

well reproduced and the spacings between states are close to experiment. Remarkably, the

IM-SRG and CCEI results are within less than 200 keV when the same harmonic-oscillator

value ~ω is used.

Of particular interest is the spectrum of 23O, which provides a unique test for theory,

as it simultaneously reflects the features of the doubly magic 22O and 24O. The shell model
23O ground state is dominated by one particle in the s1/2 orbit, while the two lowest

excited states are expected to be a single-particle 5/2+ one-hole excitation, indicative of

the strength of the 22O shell closure, and a higher-lying single-particle 3/2+ one-particle

excitation, reflecting the strength of the 24O shell closure. The 5/2+ state lies just above

the neutron decay threshold, while the 3/2+ state resides in the continuum. Reflecting the

failure to reproduce the 22O shell closure, all calculations with NN forces only predict a too

low 5/2+ state. With 3N forces included, shown in the middle panel of Figure 4, the 5/2+

state is well reproduced in all calculations (37, 39, 40). The position of the 3/2+ state is

approximately 1.0 MeV too low in MBPT and 1.0 MeV too high with IM-SRG and CCEI,

which are again in remarkable agreement. The inclusion of the continuum is expected to

lower the d3/2 orbital (59) improving the IM-SRG and CCEI results.

Finally, the right panel of Figure 4 shows the spectrum of 24O with 3N forces in com-

parison with experiment. All calculations find a clear closed-shell signature of a high 2+

energy. Moreover, the spacing to the next 1+ state is well reproduced. Note that due to

the unbound d3/2 orbital, continuum effects should be included (58).
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Ground-state energies of 25O and 26O relative to the 24O ground state, and the energy of the first

excited state in 26O relative to the 26O ground state. The experimental energies are from

MoNA/NSCL (60, 61) and from R3B/LAND (62). Results are shown for the different many-body
methods with NN+3N forces as in the bottom panels of Figure 3: MBPT including also residual

3N forces (62), IM-SRG (39), CCEI (40), MR-IM-SRG (27), SCGF (29), and CC (40).

2.3. Beyond the neutron dripline

Nuclei beyond the neutron dripline play an important role in understanding the behavior

of extreme neutron-rich systems. The unbound 25O and 26O isotopes are the current ex-

perimental limits in oxygen (60, 61, 62), and the lifetime of 26O makes it the first candidate

to exhibit two-neutron radioactivity (63). A crucial aspect neglected in most of the cal-

culations discussed here is the coupling to the continuum, which has been shown to play

an important role for the physics of unbound states (64) and specifically for the oxygen

isotopes (65). CC 3Neff calculations found a typical contribution from continuum coupling

to be on the order of 200 keV for the unbound states past 24O.

Figure 5 compares the experimental ground-state energies of 25,26O to theoretical

predictions with NN+3N forces. In addition to the contribution from 3N forces to the

SPEs and the two-body interactions of valence neutrons, the MBPT results shown (62) also

include the small contribution from residual three-valence-neutron forces. These become

more important with increasing neutron number along isotopic chains (49), with a repulsive

contribution from 0.1 − 0.4 MeV for 24−26O. For the ground state of 25O, Figure 5 shows

that MBPT, CC, and SCGF agree well with experiment, while the valence-space predictions

from IM-SRG and CCEI are modestly too bound and unbound, respectively. For the ground

state of 26O only MBPT gives a result close to experiment. Nevertheless the overbinding

seen in IM-SRG, and the underbinding obtained in MR-IM-SRG and CCEI (off the scale of

the plot) are not unreasonable given expected theoretical uncertainties. Better agreement

is found for the continuum shell model (65) and in CC 3Neff calculations (58).

As shown in Figure 5, valence-space NN+3N calculations consistently predict a low

first excited 2+ state in 26O between 1.0− 1.6 MeV. USDA and USDB interactions give a

somewhat higher energy of 1.9 MeV and 2.1 MeV, respectively (44). Experimentally, events

have been seen at 4 MeV (62), but in calculations the next state lies above 6 MeV due to

10 K. Hebeler, J. D. Holt, J. Menéndez and A. Schwenk
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Left panel: Ground-state energies of fluorine isotopes measured from 16O, compared to AME
2012 (45). The MBPT calculations (66) are performed in a proton sd and neutron sdf7/2p3/2

extended space based on low-momentum NN+3N forces, while the SCGF results (29) are with the

SRG-evolved NN+3N-full Hamiltonian. Right panel: Excited-state spectrum of 24F compared
with experiment (67) and USDB (44). The CC results (41) are obtained in a large many-body

space based on the optimized chiral NN+3N forces at N2LO. The IM-SRG results (68) are

calculated in the sd shell from the SRG-evolved NN+3N-full Hamiltonian.

the large d3/2−s1/2 gap. Note that the lowest excited states in 26O have been very recently

measured with high statistics at RIBF/RIKEN.

2.4. Neighboring open-shell nuclei

Fluorine isotopes have one more proton, and nuclear forces provide more binding mainly

due to the tensor part. No predictions based on NN+3N forces exist for the dripline in

fluorine, which lies at least as far as 31F, but selected isotopes have been calculated from

SCGF (29) and MBPT (66). These are shown in the left panel of Figure 6. Both SCGF and

MBPT agree well with experiment through 25F, with MBPT becoming modestly overbound

beyond. Future experiments are needed to test the predictions beyond 28F.

Large-scale CC results for excited states have been presented for 25,26F (69, 70) with

3Neff , and for 22,24F with an optimized N2LO NN+3N interaction (41). In addition, the

spectrum of 24F has been studied recently with the IM-SRG in comparison to new experi-

mental results (67). These are shown in the right panel of Figure 6, where we also compare

to USDB results. Without 3N forces (not shown), the spectrum is much too compressed and

the ordering of levels is incorrect for both CC and IM-SRG: The first eight excited states lie

below 2.0 MeV, in clear contrast to experiment. The NN+3N results for CC and IM-SRG

shown in Figure 6 agree well with experiment, but differences are seen due to the different

starting Hamiltonians. For CC the predicted first 2+ and 1+ states are well reproduced, but

above these the density and ordering of states begins to deviate from tentative experimental

spin-parity assignments. While the ground-state energy of 24F is overbound by 7.7 MeV in

IM-SRG, the predicted excited-state spectrum is in remarkably good agreement with the

new experimental measurements, with all excited states below the one-neutron separation
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threshold less than 200 keV away from experiment. The only exception is the 0+ state at

2.6 MeV, also predicted by USDB, to which the experiment is not sensitive.

3. NEUTRON-RICH CALCIUM ISOTOPES

The calcium isotopes (Z = 20) provide an excellent region to study shell evolution from

stability towards the neutron dripline. In addition to the standard doubly magic 40Ca and
48Ca, recent pioneering experiments at rare isotope beam facilities have explored new shell

closures in exotic 52Ca and 54Ca (71, 72). The wealth of spectroscopic data on excited

states and electromagnetic moments and transitions offers excellent tests for nuclear forces.

The calcium and neighboring isotopic chains lie at the frontier of theoretical calculations

with 3N forces. Previous studies with phenomenological valence-space interactions (35, 73,

74) or beyond-mean-field calculations (75) provide a good description up to 52Ca, but

begin to disagree for more exotic isotopes where data was not available. This provides an

additional motivation for calculations based on chiral EFT interactions.

The calcium isotopes 41−70Ca have been studied with MBPT in an extended pfg9/2

valence space based on the same low-momentum NN+3N forces as for oxygen (76, 77, 71,

78, 79). The extended valence space compared to phenomenological interactions in the pf

shell (35, 73, 74) suggests the need to treat the g9/2 orbital nonperturbatively in MBPT

calculations based on nuclear forces. Residual 3N forces between valence particles, which

are important for very neutron-rich nuclei as discussed in Section 2.3, provide very small

contributions for the calcium isotopes discussed here (71, 79). In addition to valence-space

calculations, the calcium isotopes have been studied in large many-body spaces, where all

nucleons are treated as active. The neutron-rich calcium isotopes from 47−62Ca (except for
57,58Ca) have been calculated in CC theory with phenomenological 3Neff adjusted to the

calcium isotopes (80, 81). In addition, SCGF (82) and MR-IM-SRG (83) provide results for

even calcium isotopes isotopes based on the same SRG-evolved NN+3N-full Hamiltonian

as for the oxygen isotopes. Finally, based on the same Hamiltonian, there are IT-NCSM

results for the doubly magic 40,48Ca (51).

The MBPT and CC results for the ground-state energies are in very good agreement

with experiment (77, 71, 79, 80), while the SCGF (82) and MR-IM-SRG (83) both give

overbound calcium isotopes, suggesting that the SRG-evolved NN+3N-full Hamiltonian is

too attractive for heavier nuclei. Nevertheless this overbinding is systematic for all isotopes,

and the experimental trend is reasonably reproduced.

3.1. Shell structure

The shell evolution along an isotopic chain can be studied with the two-neutron separation

energy S2n, where a significant decrease occurs past a shell closure. Figure 7 compares

the experimental S2n with calculated MBPT (77, 71), CC (80), SCGF (82) and MR-IM-

SRG (83) results. A first key feature in Figure 7 is the large decrease in S2n from N = 28

to N = 30, a signature of the N = 28 magic number. This shell closure is not reproduced

with NN forces only (76, 80, 35). First calculations with 3N forces (76, 80) showed that 3N

forces are essential for the N = 28 shell closure. This also holds for the improved MBPT

calculations of References (77, 71), shown in Figure 7, where 3N forces are included to third

order in MBPT [3N forces were only included to first order in (76)]. While the 48Ca S2n

has not been calculated in CC, the decrease from 49Ca to 50Ca reproduces experiment very

12 K. Hebeler, J. D. Holt, J. Menéndez and A. Schwenk
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Figure 7

Two-neutron separation energy S2n in neutron-rich calcium isotopes as a function of neutron
number N . The experimental energies (45, 77, 71) are compared with MBPT predictions (77, 71)

based on low-momentum NN+3N forces and CC theory with phenomenological 3Neff (80). In

addition, SCGF (82) and MR-IM-SRG (83) results are shown based on a SRG-evolved
NN+3N-full Hamiltonian.

well. Also shown in Figure 7 are SCGF (82) and MR-IM-SRG (83) results, based on the

same SRG-evolved NN+3N-full Hamiltonian, which somewhat underestimate (SCGF) or

overestimate (MR-IM-SRG) the decrease in S2n past N = 28.

The flat behavior in S2n from N = 30 to N = 32 was predicted in calculations with

3N forces (76, 77), as well as with phenomenological shell-model interactions (73, 74).

This was recently confirmed with precision Penning-trap mass measurements of 51,52Ca at

TITAN/TRIUMF (77), which found 52Ca to be 1.74 MeV more bound. This represented the

largest change in the atomic mass evaluation in the last ten years. More recently, the masses

of 53,54Ca were measured in pioneering multi-reflection time-of-flight mass measurement at

ISOLTRAP/CERN (71). The resulting S2n values show a decrease from N = 32 to N = 34,

similar to the one past 48Ca. This unambiguously establishes the doubly magic character

of 52Ca. The shell closure in calcium at N = 32 had already been suggested based on the

first excited 2+ energy in 52Ca (84, 85) and nuclear spectroscopy (86, 87). Figure 7 shows

that the experimental S2n from N = 32 to N = 34 are in excellent agreement with the

MBPT and CC predictions. We also observe that the different calculations with 3N forces

start to deviate most in 56Ca. Therefore, a future mass measurement of 56Ca would provide

a key test for theory, as well as direct information about the closed-shell nature of 54Ca.

Phenomenological shell-model interactions (73, 74) also provide a good description of S2n

to 54Ca, while energy-density functionals (88) tend to predict an almost linear trend in S2n,

missing the steeper decrease at N = 28 and N = 32 (71).

Another key observable to assess shell evolution is the excitation energy of the first 2+

state in the even isotopes. Figure 8 shows the experimental energies compared to the

available theoretical calculations with NN+3N forces: MBPT (78) and CC (80). The agree-

ment of both calculations to experiment is very good, especially in capturing the high 2+

energy in 48Ca and 52Ca, associated with the N = 28 and N = 32 shell closures. Especially

interesting is the 2+ energy in the exotic 54Ca, recently measured at RIBF/RIKEN (72),
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Excitation energy of the first 2+ state in the even calcium isotopes as a function of mass

number A. The MBPT (79) and CC results (80) corresponding to the S2n calculations of Figure 7

are compared to experiment from (72, 89).

which is also in very good agreement with both MBPT and CC predictions. The relatively

high energy of this 2+ state, and the increase compared to other N = 34 isotones, suggests

a shell closure in calcium at N = 34 (72).

From Figures 7 and 8, we see that the predictions of shell evolution are consistent

when considering different observables. In addition, three-point mass differences, defined as

∆
(3)
n = (−1)N

2
[B(N + 1, Z) +B(N − 1, Z)− 2B(N,Z)] with (negative) ground-state energy

B(N,Z), provide another signature for shell evolution, with relative peaks in ∆
(3)
n associated

with closed shells. When comparing MBPT results (78) for ∆
(3)
n with experiment, the trend

with neutron number along the calcium chain is well reproduced, with peaks at N = 28

and N = 32, and an anomalously low ∆
(3)
n value for 53Ca, placed between two shell closures

and dominated by the low-j p1/2 orbital (90).

With present calculations based on NN+3N forces, it is difficult to predict the neutron

dripline because of the very flat behavior of the ground-state energies past 60Ca found

in energy-density functional calculations, MBPT, CC, and MR-IM-SRG (80, 79, 83, 91),

so that very small interaction contributions can be decisive. In addition, for such weakly

bound systems, the continuum, currently included only in CC, plays an important role (80),

and should also be included in all calculations. Moreover, valence-space Hamiltonian for

more exotic isotopes will have to consider the 1d5/2 and 2s1/2 orbitals (80, 92). Improved

calculations towards the dripline will allow the exploration of a possible N = 40 shell closure

in 60Ca, which is the target of ongoing experimental efforts in neighboring isotopes (93).

Finally, CC calculations combined with halo EFT have suggested interesting Efimov physics

around 60Ca, with the possibility of 62Ca being a two-neutron halo nucleus (81).

In addition to the calcium results, SCGF calculations have been performed for the

ground-state energies of Ar (Z = 18), K (Z = 19), Sc (Z = 21), and Ti (Z = 22) (82),

and the resulting S2n generally agree well with experiment, apart from an overestimated

shell gap at N = 20 attributed to the NN+3N-full Hamiltonian used. In 37−49K, the

evolution of the splitting between the lowest 1/2+ and 3/2+ states calculated with SCGF
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also successfully describes experiment (94).

Finally, 3N forces provide similar repulsive contributions to the ground-state energies

of the proton-rich N = 20 isotones, which have been studied in MBPT including the

isospin-symmetry-breaking parts of chiral EFT interactions (95). Ground-state properties

of heavier neutron-rich systems have also been explored in large-scale calculations with

NN+3N forces. First MR-IM-SRG results along the nickel chain (Z = 28) (83), based on

the same NN+3N-full Hamiltonian used in calcium, show a similar overbinding, also seen

in CC calculations for doubly magic nuclei up to 132Sn (96).

3.2. Spectroscopy

The study of shell evolution is complemented by exploring spectroscopic properties of cal-

cium isotopes based on NN+3N forces. Spectra beyond 2+ states based on chiral NN+3N

forces have been obtained with MBPT (79) and with CC 3Neff for states dominated by

ground-state particle-hole excitations in 52−56Ca (80). Electromagnetic moments and tran-

sitions have also been calculated with MBPT (76, 79, 97).

The overall agreement of MBPT and CC spectra with experiment is good, with low-lying

states in odd-mass nuclei consistent with the shell evolution discussed in Section 3.1. Some

deficiencies are present, e.g., with too low 5/2− states in 49,51Ca in MBPT, but generally

the results are similar to phenomenological interactions (79). Low-lying excited states in
42Ti, calculated with MBPT (95), and in neutron-rich 52,54,56Ti, obtained from CC (80),

are also in good agreement with experiment. Future experiments with rare isotopes can test

MBPT and CC predictions for several excited states in neutron-rich 52−56Ca. In addition,

there are MBPT predictions for the mostly unexplored excited states in proton-rich N = 20

isotones up to 48Ni (95).

Electromagnetic moments provide a complementary test of nuclear forces. Figure 9

compares the experimental magnetic moments and electric quadrupole moments of neutron-

rich calcium isotopes with MBPT predictions, including the very recent measurements at

COLLAPS/ISOLDE (97). For comparison, the results with KB3G and GXPF1A interac-

tions are also shown. The lower panel of Figure 9 shows the electric quadrupole moments.

The experimental linear trend from 41Ca to 47Ca and 49Ca to 51Ca, a signature of the

filling of the f7/2 and p3/2 orbitals, suggests that the quadrupole moments are dominated

by the single-particle character of the ground states. The MBPT predictions exhibit a very

good description of the experimental quadrupole moments, in general similar to KB3G and

GXPF1A interactions and better for 47Ca. Note that the theoretical results use the same

neutron effective charges en = 0.5e (97). Electric quadrupole transitions involving excited

states in 46−50Ca have also been calculated in MBPT with the same effective charges (79).

Similar to phenomenology, the agreement with experiment is reasonable, taking into account

that the measured B(E2) values vary within a factor of 50.

The upper panel of Figure 9 compares the experimental magnetic moments with theo-

retical results obtained with bare g-factors. Calculations for the lighter isotopes 41,43,45Ca,

which assume a 40Ca core, do not reproduce experiment, suggesting the importance of sd-

shell degrees of freedom for magnetic moments. This is in agreement with the g-factors of

the 2+ states in 42,44,46Ca (98, 99), as well as calcium isotope shifts (100). For 47Ca MBPT

reproduces experiment well, and the predictions for neutron-rich 49Ca and 51Ca are in very

good agreement with very recent measurements (97). Magnetic moments with phenomeno-

logical interactions are similar to MBPT except for 51Ca, where the NN+3N calculation
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Figure 9

Magnetic moments (upper panel) and electric quadrupole moments (lower panel) of the odd

calcium isotopes as a function of neutron number N . Experiment (97) is compared to MBPT

calculations with low-momentum NN+3N forces in the pfg9/2 valence space (97). For
comparison, pf -shell calculations with phenomenological interactions KB3G (73) and

GXPF1A (74) are shown. Figure adapted from (97).

lies between KB3G and GXPF1A.

The magnetic dipole B(M1) strength in 48Ca was first calculated with MBPT in Refer-

ence (76), with improvements in Reference (79) by including 3N forces to third order. The

experimental peak at 10.2 MeV (101) is very well reproduced in the MBPT calculation, but

with too much strength, suggesting a modest quenching of q = 0.9 in the spin g-factor.

Phenomenological interactions GXPF1A and KB3 also reproduce the concentrated peak

and strength, but with a more substantial quenching of q = 0.75 (101).

This quenching is in contrast with the calculations of the magnetic moments in Figure 9,

where the bare spin g-factors give a good description of experiment. This inconsistency and

the sensitivities to different interactions in Figure 9 (compared to the smaller spread for

the quadrupole moments) point to the need for systematic calculations of magnetic moment

operators in the valence space. Necessary improvements are the inclusion of electromagnetic

two-body currents (or meson-exchange currents), which are derived in chiral EFT consis-

tently with nuclear forces, as well as controlled calculations of effective operators. Results

with chiral two-body currents in light nuclei demonstrate that they provide significant con-

tributions to magnetic moments (102), while first applications to medium-mass nuclei have

focused on Gamow-Teller transitions (41, 103).
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4. NEUTRON-RICH MATTER AND NEUTRON STARS

The physics of neutron-rich matter covers a wide range of extremes. At very low densities,

the average interparticle distance is sufficiently large so that details of nuclear forces are

not resolved and all properties of the system are governed by the large S-wave scattering

length. In this universal regime, neutron matter shares many properties with cold atomic

gases close to the unitary limit, which are the subject of active experimental and theoretical

studies (104). At intermediate densities, which are most relevant for nuclei, the properties

of neutron and nuclear matter are used to guide the development of energy density func-

tionals, in particular to constrain the physics of neutron-rich systems, which are key for

understanding the synthesis of heavy nuclei in the universe. At higher densities, far beyond

nuclear densities, the composition and properties of nuclear matter are still unknown. Ex-

otic states of matter containing strange particles or quark matter may be present. On the

other hand, neutron matter constitutes also a unique laboratory for chiral EFT, because

all many-body forces are predicted to N3LO, see Section 1.2. This offers the possibility to

derive reliable constraints based on chiral EFT interactions for the equation of state (EOS)

of neutron-rich matter in astrophysics, for the symmetry energy and its density dependence,

and for the structure of neutron stars, but also makes it possible to test the chiral EFT

power counting and the hierarchy of many-body forces at densities relevant for nuclei.

The importance of chiral 3N forces for understanding and predicting nuclei has already

been discussed in Sections 2 and 3. The same 3N forces play an important role for nu-

clear matter. In particular, the saturation of symmetric nuclear matter is driven by 3N

forces (105, 15). While 3N contributions to neutron matter are smaller, they are crucial

for the EOS of neutron-rich matter, and thus for the symmetry energy and its density

dependence discussed in Section 4.2, and for neutron stars in Section 4.3.

4.1. Neutron matter properties and theoretical uncertainties

The left panel of Figure 10 shows the energy per particle of neutron matter up to saturation

density n0 = 0.16 fm−3. The results are obtained with different many-body methods based

on chiral EFT interactions, all with the 500 MeV N3LO potential (20) at the NN level. In

case where the energy is shown with bands, for MBPT (red lines, cyan and blue band) (106,

108, 109) and SCGF (107) results, the theoretical uncertainty of the energy is dominated by

uncertainties in the low-energy couplings c1 and c3, which determine the long-range two-

pion-exchange parts of 3N forces, and not by truncations in the many-body calculation.

The red lines and blue band show results including contributions from N2LO 3N forces,

whereas the cyan band includes all 3N and 4N interactions to N3LO. In addition, for the

blue band the NN potential has been RG-evolved to a low-momentum scale Λ = 2.0 fm−1.

We also show CC (110), MBPT of Reference (111), and SCGF (107) results, including

N2LO 3N forces. These all lie within the overlap of the blue and cyan band (except for

the lowest density SCGF point, where the zero-temperature extrapolation may be difficult).

The determination of the ci couplings from πN scattering is consistent with the extraction

from NN scattering, see, e.g., the discussion in (13), however with large uncertainties.

Therefore, the ci range for the bands in Figure 10 is taken conservatively: at N2LO (red

lines and blue band), c1 = (0.7 − 1.4) GeV−1 and c3 = (2.2 − 4.8) GeV−1 (116, 106) [with

a similar ci range for SCGF (107)], and at N3LO (cyan band), c1 = −(0.75− 1.13) GeV−1

and c3 = −(4.77− 5.51) GeV−1 (117).

Figure 10 shows that chiral EFT interactions provide strong constraints on the EOS of
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Figure 10

Energy per particle E/N of neutron matter as a function of density n based on different chiral
EFT interactions and using different many-body methods The uncertainty bands in the left panel

show the energy range based on the 500 MeV N3LO NN potential of Reference (20) and including

N2LO 3N forces in MBPT (red lines) (106) or in the SCGF approach (107), as well as including
all 3N and 4N interactions to N3LO (108, 109) (cyan band). The blue band shows the results after

RG-evolution of the NN potential (17, 106). In addition, we show results obtained in CC

theory (110) and in MBPT of Corragio et al. (111). When bands are given, these are dominated
by the uncertainties in the ci couplings in 3N forces. Figure adapted from Reference (106). The

right panel shows the energy per particle including NN, 3N and 4N forces at N3LO based on

different N3LO potentials (cyan, magenta, and black bands). The bands include uncertainty
estimates due to the many-body calculation, the ci couplings, and by varying the 3N/4N cutoffs.

For details see (108, 109). For comparison, results are shown at low densities (see also the inset)
from NLO lattice (112) and quantum Monte Carlo (QMC) simulations (113), and at nuclear

densities from variational (APR) (114) and auxiliary field diffusion Monte Carlo calculations

(GCR) (115) based on 3N potentials adjusted to nuclear matter properties.

neutron matter, which are consistent among different many-body methods and considering

variations of the Hamiltonian. The remarkable overlap of the red lines and the blue band

indicates that neutron matter is, to a good approximation, perturbative for chiral NN

interactions with Λ . 500 MeV, see Reference (109) for details. This has been benchmarked

by first quantum Monte Carlo calculations with local chiral EFT interactions (118, 119).

In addition, there are calculations of neutron matter using in-medium chiral perturbation

theory approaches with similar results (120, 121).

The right panel of Figure 10 shows the first complete N3LO calculation of the neutron

matter energy, which includes all NN, 3N and 4N interactions to N3LO (108, 109). The

energy range is based on different NN potentials, a variation of the ci couplings (which

dominates the total uncertainty), a 3N/4N-cutoff variation, and the uncertainty in the

many-body calculation. We note that the individual 3N topologies at N3LO (see Figure 2)

give significant contributions to the energy (108, 109). The N3LO range in the right panel

of Figure 10 is in very good agreement with NLO lattice results (112) and quantum Monte

Carlo calculations (113) at very low densities (see inset), where the properties are deter-

mined by the large scattering length and effective range (122). We also find a very good
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Energy per particle E/N of neutron matter as a function of density n obtained from quantum

Monte Carlo calculations with phenomenological NN and 3N potentials (115), where the strength

of the short-range 3N interactions is adjusted to the chosen values for the symmetry energy Sv .
(Sv = 30.5 MeV is the symmetry energy obtained for this NN potential.) For each value of Sv , the

band shows contributions of different 3N operator structures. The inset illustrates a correlation
between Sv and the L parameter. For details see (115).

agreement with other ab initio calculations of neutron matter based on the Argonne NN and

Urbana 3N potentials: The results based on variational calculations (APR) (114) are within

the N3LO band. In addition, the results from auxiliary field diffusion Monte Carlo calcula-

tions (GCR) (115) are shown based on nuclear force models adjusted to an energy difference

of 32 MeV between neutron matter and the empirical saturation point, see Figure 11.

The properties of neutron matter impact the neutron distributions in nuclei. In partic-

ular, a higher neutron matter pressure at typical nuclear densities pushes neutrons further

out and thus implies larger neutron skins (123, 124). Using these correlations the neu-

tron matter results shown in Figure 10 (blue bands in the left panel) predict the neutron

skin of 208Pb to 0.17 ± 0.03 fm (116). This is in excellent agreement with the extraction

of 0.156+0.025
−0.021 fm from the dipole polarizability (125). The theoretical uncertainty is also

smaller than the target goal of a new PREX measurement using parity violating electron

scattering at JLAB (126). Moreover, including properties of doubly magic nuclei as con-

straints, in addition to low-density neutron matter results, leads to even tighter predictions

for the neutron skins of 208Pb and 48Ca to be 0.182±0.010 fm and 0.173±0.005 fm, respec-

tively (127).

4.2. Symmetry energy

The symmetry energy characterizes the behavior of the energy of nuclear matter as a func-

tion of proton fraction x = np/n or asymmetry parameter β = (N − Z)/A = (1 − 2x).
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Table 1 Predicted range for the symmetry energy Sv and the L parameter, which

determines the density dependence of the symmetry energy. The results (106) are

obtained from neutron matter calculations based on chiral NN+3N forces using the

expansion Equation 4 with different γ values, which lead to different incompressibilities

K. As shown, the predicted ranges for Sv and L depend very weakly on γ. Also given

is the predicted range for the L parameter based on quantum Monte Carlo calculations

with phenomenological NN+3N potentials, where the strength of the short-range 3N

interactions was adjusted to the chosen range for Sv (115) (see also Figure 11).

γ K [MeV] Sv [MeV] L [MeV]

1.2 210 29.7− 32.8 32.4− 53.4

4/3 236 29.7− 33.2 32.5− 57.0

1.45 260 30.1− 33.5 33.6− 56.7

Gandolfi et al. (2011) 32.0− 35.1 40.6− 63.6

Around symmetric matter, the energy per particle can be expanded in the following form:

E(x, n)

A
=
E(0, n)

A
+ β2Esym(n) + . . . . (1)

Since the symmetry energy is a key quantity for the equation of state and for astrophysical

applications, it has been subject of many experimental and theoretical studies (128, 129,

130). Sometimes the above expansion is truncated after the quadratic term, however, in

general the symmetry energy Sv is defined as the second derivate with respect to proton

fraction,

Sv =
1

8

∂2E/A(n̄, x)

∂x2

∣∣∣∣
n̄=1,x=1/2

, (2)

where n̄ = n/n0 is the density in units of the saturation density. Another important

quantity for astrophysics is the density dependence of the symmetry energy, characterized

by the L parameter,

L =
3

8

∂3E/A(n̄, x)

∂n̄∂x2

∣∣∣∣
n̄=1,x=1/2

. (3)

To obtain Sv and L it is necessary to extend the microscopic calculations to finite

proton fractions. This can be achieved by either performing calculations for several different

asymmetries or by using neutron matter and symmetric nuclear matter as anchor points and

interpolating these results to arbitrary proton fractions. One such interpolation has been

used in Reference (106), with an empirical parameterization that includes kinetic energy

terms plus an interaction energy that is quadratic in the neutron excess 1− 2x:

E/A(n̄, x)

T0
=

3

5

[
x5/3 + (1− x)5/3

]
(2n̄)2/3

− [(2α− 4αL)x(1− x) + αL] n̄+ [(2η − 4ηL)x(1− x) + ηL] n̄γ . (4)

Here, T0 = 36.84 MeV is the Fermi energy of symmetric nuclear matter at the saturation

density. The parameters α, η, αL, and ηL can be determined from the empirical saturation

properties of symmetric nuclear matter combined with microscopic calculations of neutron

matter (106). This strategy takes advantage of the fact that the theoretical uncertainties
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Symmetry energy as a function of density n obtained from ab initio calculations of asymmetric
matter based on chiral NN+3N forces (135) (red band), from microscopic calculations performed

with a variational approach [Akmal et al. (1998)] (114) and from Brueckner-Hartree-Fock
calculations (BHF) (136) based on the Argonne v18 NN and Urbana UIX 3N potentials (with

parameters adjusted to the empirical saturation point). For comparison, the band over the density

range n = 0.04 − 0.16 fm−3 is based on an analysis of isobaric analog states (IAS) and including
the constraints from neutron skins (IAS + skins) (137). Figure taken from (135).

of neutron matter calculations are significantly smaller than for systems with finite proton

fractions. As shown in Table 1, the predicted range for Sv and L depends only weakly

on the particular choice of γ, which is correlated with the incompressibility. Also given

is the predicted range for the L parameter obtained from quantum Monte Carlo calcula-

tions (115) based on 3N potentials adjusted to the chosen range of Sv. Figure 11 shows

these results for neutron matter in more detail, highlighting the correlation between Sv and

L. It is remarkable how well the Sv − L regions in Table 1 agree, given the very different

Hamiltonians used in the quantum Monte Carlo calculations.

The Sv − L predictions based on NN+3N forces agree well with constraints obtained

from energy density functionals for nuclear masses (131) and from the 208Pb dipole po-

larizability (125). In addition, there is good agreement with studies of the Sn neutron

skin (132), of giant dipole resonances (133), and with an estimate obtained from modeling

X-ray bursts and quiescent low-mass X-ray binaries (134). A detailed discussion can be

found in Reference (129).

Recently, the symmetry energy has also been studied in ab initio calculations of asym-

metric matter at small proton fractions based on chiral EFT interactions (135). The energy

of asymmetric matter was found to compare very well with the quadratic expansion even

for neutron-rich conditions, which was then used to extract the quadratic symmetry energy

term Esym. In addition, the results were used to benchmark the empirical parameteriza-

tion, Equation 4, with very good agreement. In contrast to other calculations, the results

are based on 3N forces fit only to light nuclei, without adjustments to empirical nuclear

matter properties. The results for Esym are compared in Figure 12 with constraints from
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a recent analysis of isobaric analog states (IAS) and including the constraints from neu-

tron skins (IAS + skins) (137), showing a remarkable agreement over the entire density

range. Compared to extracting the symmetry energy from neutron matter calculations

using the empirical parameterization, Equation 4, the uncertainty is reduced due to the

explicit information from asymmetric matter.

4.3. Neutron stars

The structure of nonrotating neutron stars can be studied by solving the Tolman-

Oppenheimer-Volkov equations (138), based on an EOS of neutron star matter, i.e., matter

in beta-equilibrium. The proton fraction x for matter under these conditions is determined

by minimizing, for a given nucleon density, the total energy per particle plus the contribu-

tions from electrons and from the rest mass of the nucleons. The resulting proton fractions

are of the order x ≈ 5% (116, 106).

Since the central densities of neutron stars can significantly exceed the regime for which

reliable microscopic nuclear matter calculations are possible, it is necessary to extend the

EOS systematically to higher densities. This can be achieved by using microscopic results up

to a maximal density and employing general piecewise polytropic extensions beyond (116,

106). This strategy allows for soft regions and generates a complete set of possible EOSs

at high densities, independent of the assumptions on the interactions and constituents of

matter at high densities. In the end only those EOS are retained that (a) remain causal for

all relevant densities, and (b) are able to support a neutron star mass M = M̂ , the mass of

the heaviest observed neutron star.

The left panel of Figure 13 shows the resulting uncertainty band for the pressure

as a function of mass density. The blue band at lower densities represents the pressure

predicted for matter in beta equilibrium based on chiral EFT interactions (see red dashed

lines in the left panel of Figure 10). The bands at higher densities give the EOS range,

which is the envelope of all allowed polytropes at higher densities. The lighter blue band

at high densities corresponds to the mass constraint M̂ = 1.97M�, the central value of

the two-solar-mass neutron star measured by Shapiro delay (139) and the lower 1σ mass

of the recently observed most massive neutron star from radio timing observations (140),

whereas the darker blue band corresponds to M̂ = 2.4M�, a fictitious heavier neutron

star. Obviously, the higher the mass of the heaviest neutron star observed, the stronger the

EOS band is constrained. This uncertainty band is compared with a representative set of

EOSs used in the literature. This set contains EOSs calculated within diverse theoretical

approaches and based on different degrees of freedom. For details and notation we refer

to Reference (141). We find that a significant number of EOSs are not compatible with

the lower density band based on chiral EFT interactions. In addition, at higher densities

only very few EOSs, including the variational EOSs based on phenomenological nuclear

potentials (114) AP3 and AP4 in the left panel of Figure 13, are within the uncertainty

bands over the entire density range. Finally, these constraints imply that a 1.4 (1.97)M�
neutron star does not exceed densities beyond 4.4 (7.6)n0, which corresponds to a Fermi

momentum of only 550 (660) MeV.

The EOS bands directly translate into constraints for the radii of neutron stars. In the

right panel of Figure 13 we present the radius constraints obtained from the EOS bands

shown in the left panel for the case M̂ = 1.97M� (blue dashed lines) and the corresponding

bands based on complete N3LO calculations shown in the right panel of Figure 10 (red
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Left panel: Constraints for the pressure P of neutron star matter as a function of mass density ρ

compared to EOSs commonly used to model neutron stars (141). The blue band at low densities
represents the pressure predicted by the neutron matter results of Figure 10 (red lines of the left

panel) and incorporating beta equilibrium. The bands at high densities are the envelope of general

polytropic extensions that are causal and support a neutron star of mass M̂ = 1.97M� (light blue

band) and M̂ = 2.4M� (darker blue band). For details see (106). Right panel: Constraints on the

mass-radius diagram of neutron stars based on the N3LO neutron matter results of Figure 10
(right panel) and following (106) for the extension to neutron-star matter and to high densities

(red band), in comparison to the constraints based on RG-evolved NN interactions and 3N forces

at N2LO (thick dashed blue lines, based on the 1.97M� band of the left panel). We also show the
mass-radius relations obtained from EOSs for supernova simulations. For details see (109).

band). The radius uncertainty band represents an envelope of a large number of individual

EOS reflecting the uncertainties at low densities and in the polytropic extensions to high

densities (106, 109).The results of Figure 13 predict a radius range of 9.7 − 13.9 km for

a 1.4M� neutron star based on the complete N3LO calculations. The largest supported

neutron-star mass is found to be 3.1M�, with a corresponding radius of about 14 km.

These results agree very well with the mass-radius constraints from the neutron matter

calculations based on RG-evolved NN interactions with N2LO 3N forces. Furthermore, the

radius constraints are also consistent with astrophysical extractions obtained from modeling

X-ray burst sources, see, e.g., Reference (134).

For astrophysical applications it is crucial to reduce the theoretical uncertainties of the

EOS over the entire density range shown in the left panel of Figure 13. At lower densities this

requires improved estimates and a reduction of the theoretical uncertainties in nuclear forces.

Specifically, this involves the inclusion of higher-order contributions in the chiral expansion,

systematic order-by-order convergence studies, as well as improved determinations of the

low-energy couplings. At higher densities, novel observations are expected to provide new

and model-independent constraints: On the one hand, the observation of heavier neutron

stars leads to a systematic reduction of the uncertainties, as illustrated in the left panel of

Figure 13. On the other hand, astrophysical information on neutron star radii will provide

significant constraints on the EOS. In particular, the gravitational wave signal from mergers
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of binary neutron stars (142, 143, 144, 145) and neutron star-black hole mergers (146) has

been shown to be sensitive to properties of the EOS at high densities and to neutron star

radii. Hence, a detection with, e.g., advanced LIGO (147) will significantly improve our

knowledge of the EOS in this regime. Moreover, future observations with the Neutron star

Interior Composition ExploreR (NICER) and the Large Observatory for X-Ray Timing

(LOFT) offer completely new perspectives for measuring neutron star radii. This will in

turn provide important insights into nuclear forces at neutron-rich extremes.

5. SUMMARY AND OUTLOOK

We have shown that the physics of 3N forces connects neutron-rich nuclei with neutron-rich

matter in neutron stars. The main features discussed in this review can be summarized by

3N forces having two effects for neutron-rich systems: first, 3N forces provide a repulsive

central interaction, which drives saturation and leads to a stiffening of the neutron matter

equation of state with increasing density. The same repulsion is important for the contribu-

tions from 3N forces to the ground-state energies that are key for the location of the neutron

dripline. Second, 3N forces provide an attractive spin-orbit interaction, which increases the

spin-orbit splittings and gives rise to the associated magic numbers, e.g., at N = 28. This

physics and its interplay with the repulsive central interaction is at play for the formation

and evolution of shell structure and for the spectroscopy of neutron-rich nuclei discussed

in this review. The experimental discoveries for neutron-rich oxygen and calcium isotopes

show that 3N forces provide an exciting link between the theoretical frontier in effective field

theories and many-body methods with the exploration of exotic nuclei at rare isotope beam

facilities worldwide. Three-nucleon forces are also key for the properties of neutron-rich

matter at nuclear densities, which impacts the neutron skin, the symmetry energy, and the

structure of neutron stars, in particular their radii.

Finally, we list a number of open problems and opportunities. First, it is important

to study the order-by-order convergence in chiral EFT, and to carry out first complete

N3LO calculations of nuclei. This is especially important, because the Q4 contributions are

known to be important for an accurate reproduction of NN phase shifts at energies relevant

to nuclei. It is crucial to study the theoretical uncertainties due to the truncation in chiral

EFT, due to uncertainties in the low-energy couplings in NN and 3N forces, and due to the

many-body calculation. While the latter has been well documented for many approaches

and with benchmarks (see, e.g., the remarkable agreement for the same Hamiltonian with

different ab initio methods discussed here), the theoretical uncertainties in the Hamiltonian

have been less explored. Because most calculations so far are based on the N3LO potential

of Reference (20), it is also necessary to explore different NN potentials and many new

developments in chiral EFT, including the optimized potentials of References (41, 148),

new local chiral potentials (119), and improved chiral potentials of Reference (149), all

with corresponding 3N forces. In addition, it is important to explore improved power

counting schemes (e.g., see the discussion in Reference (150)) and to investigate nuclear

forces with explicit ∆ degrees of freedom (151, 152). Moreover, the discussed results show

that additional work is needed to quantify the theoretical uncertainties, especially due to

the truncation in chiral EFT (153), which is particularly relevant to the long-range parts

of 3N forces due to the large ci values.

Important advances for ab initio calculations are the investigation of open-shell nuclei

with a range of many-body methods, the inclusion of the continuum for loosely bound
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and resonant states close to the dripline (64, 58), the study of electroweak transitions with

effective operators and consistent two-body currents based on chiral EFT (154, 103, 102, 41),

extending the calculations to heavier nuclei with a controlled convergence in terms of 3N

matrix elements included, and the reduction of uncertainties in the equation of state to

further constrain the properties of neutron-rich matter and neutron-stars. Finally, it would

be very interesting to transport the knowledge and constraints from nuclear forces to density

functional calculations of all nuclei, especially regarding the structures of 3N forces and their

impact on neutron-rich systems.
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67. Cáceres L, et al. Phys. Rev. C 92:014327 (2015)

68. Bogner SK, Hergert H, Holt JD, Schwenk A. In preparation (2015)

69. Lepailleur A, et al. Phys. Rev. Lett. 110:082502 (2013)

26 K. Hebeler, J. D. Holt, J. Menéndez and A. Schwenk



70. Vajta Z, et al. Phys. Rev. C 89:054323 (2014)

71. Wienholtz F, et al. Nature 498:346 (2013)

72. Steppenbeck D, et al. Nature 502:207 (2013)

73. Poves A, Sanchez-Solano J, Caurier E, Nowacki F. Nucl. Phys. A 694:157 (2001)

74. Honma M, Otsuka T, Brown BA, Mizusaki T. Eur. Phys. J. A 25:499 (2005)

75. Rodriguez TR, Egido JL. Phys. Rev. Lett. 99:062501 (2007)

76. Holt JD, Otsuka T, Schwenk A, Suzuki T. J. Phys. G 39:085111 (2012)

77. Gallant AT, et al. Phys. Rev. Lett. 109:032506 (2012)

78. Holt JD, Menéndez J, Schwenk A. J. Phys. G 40:075105 (2013)

79. Holt JD, Menéndez J, Simonis J, Schwenk A. Phys. Rev. C 90:024312 (2014)

80. Hagen G, et al. Phys. Rev. Lett. 109:032502 (2012)

81. Hagen G, Hagen P, Hammer HW, Platter L. Phys. Rev. Lett. 111:132501 (2013)
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