
Recitation 1 – Moderns Aspects of Nuclear Physics – SS22
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1.1 Magnetic moment of the proton and neutron (1 Point)

A quark that behaves like a Dirac particle has a magnetic dipole moment 〈~µ〉. The magnetic dipole

operator ~µ is defined by

~µ = gsµ0~s = gsµ0

~σ

2
, (~s =

1

2
~σ)

with gs the g factor, µ0 the quark magneton, ~s the spin of the quarks, and ~σ the vector of the Pauli spin

matrices ~σ = (σx, σy, σz).

The magnetic dipole moment 〈~µ〉 of the quark is defined as the expectation value of the magnetic dipole

operator in the spin-up state, i.e. 〈~µ〉 = 〈↑ |~µ| ↑〉 = 〈↑ |µz| ↑〉 = gsµ0

2 . The dipole moment 〈~µu〉 of the up

quark is thus

〈~µu〉 = gsµN

2
mN

mu

2
3 , and the dipole moment 〈~µd〉 of the down quark 〈~µd〉 = gsµN

2
mN

md
(− 1

3 ), with mN the

mass of the proton and mu,md the masses of the up and down constituent quarks.

The magnetic dipole moment 〈~µp〉 of the proton is defined as the expectation value of the sum of the

magnetic dipole operator of the three valence quarks in the proton spin-up state,

〈~µp〉 = 〈p ↑ |
3∑
j=1

~µj |p ↑〉 = 〈p ↑ |
3∑
j=1

µz|p ↑〉

with ~µj the dipole operator acting on the valence quark j.

In order to calculate the magnetic dipole moment 〈~µp〉 of the proton, one needs the spin-flavor wave

function that can be written as

|p ↑〉 =
1√
18

(2|u ↑ d ↓ u ↑〉+ 2|u ↑ u ↑ d ↓〉+ 2|d ↓ u ↑ u ↑〉

−|u ↑ u ↓ d ↑〉 − |u ↓ d ↑ u ↑〉 − |u ↑ d ↑ u ↓〉

−|d ↑ u ↓ u ↑〉 − |d ↑ u ↑ u ↓〉 − |u ↓ u ↑ d ↑〉

(1)

a) Calculate the magnetic dipole moment 〈~µp〉 of the proton.

Hint:: The individual terms in the wave functions are orthogonal to each other. Use valence quark

masses.

b) Now, calculate the magnetic dipole moment 〈~µn〉 of the neutron. First, write down the wave

function of the neutron unser the assumption of isospin symmetry, i.e. exchange the up quarks for

down quarks and vice versa.

c) Calculate the ratio of the magnetic moments of the proton and neutron. Compare your results to

experimental results.

d) Is the given spin-flavour wave function symmetric or antisymmetric under the exchange of identical

particles? Argue why.

Solution:

a) The magnetic dipole moment of the proton is



〈~µp〉 = 〈p ↑ |
3∑
j=1

µz|p ↑〉

The masse of the up and down quark are assumed to be equal.

The first term of the wave function (with mu = md) results in

〈|u ↑ d ↓ u ↑ |
3∑
j=1

µz|u ↑ d ↓ u ↑〉 = 〈µu〉 − 〈µd〉+ 〈µu〉 =
gsµN

2

mN

mu

5

3
. (2)

This leads to

〈~µp〉 =
gsµN

2

mN

mu

1

18
(4

5

3
+ 4

5

3
+ 4

5

3
− 6

1

3
) =

gsµN
2

mN

mu

(3)

and

b)

〈~µn〉 =
gsµN

2

mN

mu

(−2

3
)

and finally

c)

〈~µp〉
〈~µn〉

= −3

2
,

in good agreement with the experimental value of -1.46.

d) The spin-flavour wave function is symmetric, the quarks are in the ground state with vanishing

orbital momentum, l = 0. Thus, the spatial part of the wave function is symmetric. This necessi-

tates the introduction of an additional degree of freedom, i.e. color, with the color wave function

to be antisymmetric.

N.B. The spin wave function χ0,0(1, 2) for the singlet state is antisymmetric, the spin wave function

χ1,mz=1,0,−1(1, 2) for the triplet state is symmetric.

χ0,0(1, 2) =
1√
2

[| ↑↓〉 − | ↓↑〉]

χ1,1(1, 2) = | �〉

χ1,0(1, 2) =
1√
2

[| ↑↓〉+ | ↓↑〉]

χ1,−1(1, 2) = | �〉

1.2 Proton form factor (1 Point)

The experimental result shown in figure 1 shows that the electrical form factor of the proton is well

parametrised by a ’dipole function’:

GE(Q2) =
1(

1 +Q2/Q2
0

)2 , with Q2
0 = 0.71 GeV2.
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Figure 1: Experimental data on the electrical form factor of the proton.

a) Taking Q2 ≈ −~q 2, show that this implies that the proton has an exponential charge distribution

of the form

ρ(~r) = ρ0e
−r/a .

Find the value for a.

b) For a spherically symmetric charge distribution ρ(r), where∫
ρ(r)d3~r = 1 ,

show that the form factor can be expressed as

F (~q 2) =
4π

q

∫ ∞
0

r sin (qr)ρ(r) dr

≈ 1− 1

6
q2〈R2〉+ . . . ,

where 〈R2〉 is the mean square charge radius.

Hint: You will need to use the expansion sin (qr) ≈ qr − 1
3! (qr)

3 + . . . .

Hence show that

〈R2〉 = −6

[
dF (~q 2)

dq2

]
q
2
=0

.

Estimate 〈R2〉 of the proton.

c) Plot the charge distribution of a proton and indicate the values of a and
√
〈R2〉. Compare these

values with the proton radius given by the Particle Data Group.

d) What is the optimal angle for measuring scattered electrons in order to obtain a high sensitivity

to the proton radius?

Solution:

We start with the general consideration on the form factor of a spherically symmetric charge distribution.

F (~q 2) =

∫
ρ(~r)ei~q ·~rd3~r
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Using spherical coordinates leads to

F (~q 2) = 2π

∫ ∞
0

dr r2
∫ 1

−1
d(cos θ)ρ(~r)ei|~q||~r| cos θ

F (~q 2) = 2π

∫ ∞
0

dr r2ρ(~r)
ei|~q||~r| − e−i|~q||~r|

i|~q||~r|

F (~q 2) =
4π

|~q|

∫ ∞
0

dr rρ(~r) sin(|~q||~r|)

a) Using ρ(~r) = ρ0e
−r/a, one gets (e.g. from Wolframalpha)

F (~q 2) =
4πρ0
|~q|

2a3|~q|
(1 + a2|~q 2|)2

F (~q 2) = 8πa3ρ0
1

(1 + |~q| 2

Q0
)2
,

with a2 = 1

Q
2
0

.

Thus,

a =
1√

0.71GeV2
=

1

0.84GeV

a =
0.2

0.84
fm = 0.24 fm.

b) We start with

F (~q 2) =
4π

q

∫ ∞
0

r sin (qr)ρ(r) dr

Taylor expansion of the sine term leads to

= 4π

∫ ∞
0

dr r2ρ(r)

[
1− q2r2

3!
+
q4r4

5!
+ ...

]
.

Taking the derivative with respect to dq2, at q2 = 0 only the term − r
2

3! remains, so that

dF (~q 2)

dq2
|
q
2
=0

= −4π

6

∫ ∞
0

dr r4ρ(r) = −e
6
〈r2〉.

Taking the dipole form factor,

dF (~q 2)

dq2
= − 2Q4

0

(Q2
0 + ~q 2)3

dF (~q 2)

dq2
|
q
2
=0

= − 2

Q2
0

Evaluate

〈R2〉 = −6

[
dF (~q 2)

dq2

]
q
2
=0

=
12

Q2
0

= 12a2

√
〈R2〉 =

√
12a = 0.83 fm.
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c) This value is in agreement with the PDG value

radius (fm)
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d) One has to measure small values of ~q 2, i.e. small momentum transfers and thus at small scattering

angles.

1.3 Quark-Parton Model (1 Point)

In this problem we discuss structure functions in deep-inelastic scattering in the quark-parton model.

Figure 2 shows measurements of the structure functions in electron-proton (F ep
2 ) and electron-deuteron

(F eD
2 ) scattering made at the Stanford Linear Accelerator Center (SLAC). From ep and eD scattering

one can determine the Parton Distribution Functions for proton (F ep
2 ) and neutron (F en

2 ). Consider only

u, ū, d, and d̄ quarks for this problem.

a) Write down the structure functions F ep
2 and F en

2 in the quark-parton model in terms of the parton

distributions qpi (x) of the proton.

Hint: the master formula of the quark-parton model is

F ep
2 = x

∑
i

Q2
i q

p
i

b) Determine the quark-parton model prediction for

R =

∫ 1

0
F eD
2 (x) dx∫ 1

0
F ep
2 (x) dx

.

Experimentally one finds R ≈ 0.84. What does this imply for the ratio fd/fu where fq :=∫ 1

0
x(q(x) + q̄(x)) dx?

c) Assume fu = 0.36. What fraction of the proton’s momentum is carried by quarks?

d) Show that
1∫

0

[F ep
2 (x)− F en

2 (x)]

x
dx ≈ 1

3
+

2

3

1∫
0

[
ū(x)− d̄(x)

]
dx.

Interpret the measured value of 0.24± 0.03.

e) In the limit x→ 1 valence quarks are expected to dominate. Write the ratio

F en
2 (x)

F ep
2 (x)

in this limit in terms of the valence quark distributions uv(x) and dv(x). Experimentally one finds

F en
2 (x)/F ep

2 (x)→ 0.25 for x→ 1. What does this imply for the ratio dv(x)/uv(x)?
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Figure 2: F ep
2 (x) (a) and F eD

2 (x) (b) measured for 2 < Q2/GeV2 < 30. Data from Whitlow et

al., Phys. Lett. B282 (1992) 475.

Solution:

a) The master formula of the quark-parton model is

F ep
2 = x

∑
i

Q2
i q

p
i

This yields

F ep
2 (x) = x

(
4

9
[u(x) + ū(x)] +

1

9

[
d(x) + d̄(x)

])
F en
2 (x) = x

(
4

9

[
d(x) + d̄(x)

]
+

1

9
[u(x) + ū(x)]

)
b) We have

F eD
2 (x) =

F ep
2 (x) + F en

2 (x)

2
= x

5

18

(
u(x) + ū(x) + d(x) + d̄(x)

)
Hence we obtain

R =

∫ 1

0
F eD
2 (x) dx∫ 1

0
F ep
2 (x) dx

=
5
18 (fu + fd)
4
9fu + 1

9fd
=

5(fu + fd)

8fu + 2fd
≡ 5(1 + r)

8 + 2r
, r := fd/fu.

so that

r =
5− 8R

2R− 5
≈ 0.52

c) With the above results we get

fquarks = fu + fd ≈ 1.5fu = 0.55

The quarks carry only about 50% of the proton’s momentum, the rest is carried by gluons.
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d)

1∫
0

[F ep
2 (x)− F en

2 (x)]

x
dx =

1

3

1∫
0

u(x) + ū(x)− (d(x) + d̄(x)) dx

=
1

3

1∫
0

u(x)− ū(x) + 2ū(x)− (d(x)− d̄(x) + 2d̄(x)) dx

≈ 1

3
+

2

3

1∫
0

ū(x)− d̄(x) dx

The measured value of 0.24 ± 0.03 is smaller than 1/3, indicating that there are more d̄ quarks

than ū quarks in the proton.

e) Ignoring the sea quarks for x→ 1 we obtain

F ep
2 (x) = x

1

9
(4uV (x) + dV (x)) , F en

2 (x) = x
1

9
(uV (x) + 4dV (x))

This gives

R =
F en
2 (x)

F ep
2 (x)

=
uV (x) + 4dV (x)

4uV (x) + dV (x)
=

1 + 4dV (x)/uV (x)

4 + dV (x)/uV (x)

The measured value for the ratio of 0.25 seems to imply that dV (x)/uV (x) vanishes as x approaches

1.
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