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I. INTRODUCTION

Quantum chromodynamics (QCD) is most predictive
in the perturbative, short-distance regime. Yet our un-
derstanding of long distance, non-perturbative properties
of QCD keeps improving. Lattice QCD has been used
to compute the hadronic spectrum and matrix elements
for weak transitions, the Nc → ∞ limit and new vari-
ants thereof have been widely applied, and heavy-quark
symmetry has helped to elucidate heavy-heavy QQ̄ and
heavy-lightQq̄ hadrons. The SU(2)L×SU(2)R global chi-
ral symmetry and the spontaneous breaking of this sym-
metry to the vectorial, isospin SU(2)V , which are manda-
tory in QCD [1]-[13], underlie isospin symmetry, the fact
that the pions are light almost Nambu-Goldstone bosons
(NGB’s) [14, 15], and the usefulness of chiral perturba-
tion theory. Another specific advance was the resolution
of the U(1)A problem by instantons [16], thus explaining
why the η′ is not light.
The remarkable success of the nonrelativistic (“naive”)

quark model (NQM) treating the u, d, and s quarks
as nonrelativistic, spin-1/2 fermions is of great interest
[17]-[19]. This model dictated the low-lying flavor SU(3)
multiplets and many aspects of their electroweak inter-
actions. Spontaneous chiral symmetry breaking (SχSB)
generates dynamical, constituent masses of order the
QCD scale ΛQCD ≃ 250 MeV for the light, almost mass-
less u and d quarks and increments by this amount the
hard Lagrangian mass of the s quark, ms ≃ 120 MeV to
produce a constituent s quark mass. Our results are not
sensitively dependent upon the values of the constituent
quark masses; we use the values [20, 21]

Mu =Md ≡Mud ≃ 340 MeV (1.1)

and

Ms ≃ 470 MeV . (1.2)

The dynamical mass generation of the constituent quark
masses in QCD can, for example, be shown via analy-
sis of the Dyson-Schwinger equation for the quark [23].
One may roughly characterize the range of the QCD in-
teractions responsible for the 〈q̄q〉 condensate as r0. The
effective size of a constituent quark, consisting of the bare

valence quark and its entourage of gluons and qq̄ pairs,
is expected to be of order r0. A small r0, less than 0.2
fm, say, then yields constituent quarks of that size mov-
ing inside a hadron of size approximately 1 fm under the
influence a smooth confining potential, making the NQM
plausibly justified.

Some of the mechanisms suggested for generating
spontaneous chiral symmetry breaking - in particular,
Nambu-Jona Lasino-type (NJL) models [14, 24], and
those involving instantons [16, 25, 26] - can have rela-
tively short range. However in the approach of Casher
[1] and Banks and Casher [2], SχSB results from confine-
ment. In this approach there is no separation of scales
between the constituent quark size and hadron sizes.

The almost massless Nambu-Goldstone pion - the other
consequence of spontaneous chiral symmetry breaking -
generates arguably the single most serious difficulty for
the NQM, namely what has been called the “ρ–π puz-
zle” (e.g., [27]) This is the challenge of simultaneously
explaining the pion as a qq̄ bound state and an approx-
imate NGB, and relating it to the ρ. There is an anal-
ogous, although less severe, problem for the K and K∗.
Although this difficulty is most clearly manifest within
the NQM, it transcends this nonrelativistic model. Thus,
also the original MIT bag model with relativistic quarks
confined in a spherical cavity requires large hyperfine in-
teractions to try to split the masses of the π and ρ and,
like the NQM, fails to explain the almost massless pi-
ons [28]. To get a sufficiently light pion in the MIT bag
model, it is necessary to argue that subtantial contribu-
tions due to the fluctuations in the center-of-mass should
be subtracted [29] (see also [30, 31]).

In this paper we shall revisit the problem of under-
standing the dual nature of the pion (and kaon) as qq̄
bound states and as collective, almost massless Nambu-
Goldstone bosons. The organization of the paper is as
follows. In Section II we elaborate on the ρ–π puzzle in
the context of the nonrelativistic quark model. In Section
III we present a heuristic picture that gives some new in-
sight into this puzzle by helping to explain the π as both
a qq̄ bound state and an approximate Nambu-Goldstone
boson. In Section IV we consider the K − π transition
form factor, f+(q

2) . Its deviation from unity at van-
ishing momentum transfer is governed by the Ademollo-
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Gatto theorem [32], and analogous deviations from heavy
quark universality are derived in a general context . In
Section V we comment on the systematics of quark mass
differences inferred from (Qs̄) and (Qq̄) mesons, where
q = u or d. This has been elaborated independently by
Karliner and Lipkin [33]. Still, we feel that it is of suffi-
cient interst to present it here from our point of view.

II. THE ρ-π PUZZLE

Several pieces of data suggest that the pion, which is
lighter than the ρ by approximately 640 MeV, is other-
wise rather similar to the ρ, as expected in the nonrela-
tivistic quark model for the 1S0 pseudoscalar partner of
the 3S1 vector meson. These data can be summarized as
follows:

• One measure of the size of a hadron is provided by
the magnitude of the charge radius. The charge
radii of the π+ and K+ are given by [20]

(〈r2〉π+)1/2 = 0.672± 0.008 fm (2.1)

and

(〈r2〉K+)1/2 = 0.560± 0.031 fm . (2.2)

These are rather similar and, indeed, are not very
different from the charge radius of the proton,

(〈r2〉p)1/2 = 0.875± 0.007 fm . (2.3)

• Similar π and ρ sizes and a somewhat smaller kaon
are suggested by the total cross sections on protons
at a typical laboratory energy above the resonance
region. Averaged over meson charges, at a lab en-
ergy Elab = 10 GeV, these are [20]:

σπN ≃ 26.5 mb (2.4)

and

σKN ≃ 21 mb . (2.5)

Although one obviously does not have beams of ρ
mesons available experimentally, owing to the very
short lifetime of the ρ, it is possible to estimate
what the cross section for ρ − N scattering would
be if one did have such beams. Diffractive ρ pro-
duction data and vector meson dominance yield the
estimate [34]

σρN ≃ 27± 2 mb . (2.6)

This cross section is essentially the same, to within
the experimental and theoretical uncertainties, as
σπN at the same energy (and these are approxi-
mately equal to (2/3)σNN at this energy).

• The nonrelativistic quark model was able to fit the
measured values of the proton and neutron mag-
netic moments µp = 2.793µN and µn = −1.913µN ,
(where µN = e/(2mp)) and the ratio µp/µn ≃
−3/2, as well as the values of the hyperon magnetic
moments, in terms of Dirac magnetic moments of
constituent quarks. It also explained decays such
as ω → π0 + γ and ρ → πγ as quark spin flip
3S1 → 1S0 electromagnetic transitions. The opti-
mal overlap of the ρ and π wavefunctions implied
by this confirms the similarity of the vector and
pseudoscalar meson ground state wavefunctions.

• The amplitudes for semileptonic Kℓ3 decays involve
the vector part of the weak |∆S| = 1 current and
contain the product of Vus with the f+(q

2) transi-
tion form factor. In the limit of SU(3) flavor sym-
metry mu = md = ms, so that mK = mπ, the
conserved vector current (CVC) property implies
that f+(0) = 1. Experimentally, f+(q

2 = 0) is very
close to unity. The success of these fits implies al-
most optimal overlap between the wavefunctions of
the pion and kaon.

In the nonrelativistic quark model, one can rewrite the
two-body quark-antiquark Hamiltonian as an effective
one-body problem with the usual reduced mass

µij̄ =
MiMj

Mi +Mj
(2.7)

for the qiq̄j pseudoscalar meson. (The context will make
clear where the notation µ refers to a magnetic moment
and where it refers to a reduced mass.) The correspond-
ing bound-state wave function is denoted ψπ(r), ψK(r),
etc., where r = rqi − rq̄j is the relative coordinate in the
bound state. With the above-mentioned typical values
Mud = 340 MeV and Ms = 470 MeV, one has

µπ =
Mud

2
= 170 MeV (2.8)

and

µK =
MudMs

Mud +Ms
= 200 MeV , (2.9)

where it is understood that the choices for the input val-
ues of the constituent quark masses in these formulas
depend somewhat on the method that one uses to infer
their values [21]. In the nonrelativistic quark model, since
a bound state involving a larger effective reduced mass
is expected to be smaller, one has some understanding of
the fact that

√

〈r2〉K+ ≃ 0.83
√

〈r2〉π+ . The deviation of
f+(0) from unity is also in accord with this difference of
reduced masses.
For heavy QQ̄ quarkonium systems one can use the

nonrelativistic Schrödinger equation to describe a num-
ber of properties of the bound states [18, 19]. This use is
justified by the fact that in the cc̄ and bb̄ systems the re-
spective heavy quark massesmc ≃ 1.3 GeV andmb ≃ 4.3



3

GeV are large compared with ΛQCD, and the asymptotic
freedom of QCD means that αs gets small for such mass
scales. The hyperfine splitting in these Q̄Q systems, be-
ing proportional to αs/mQ, is small.
For light q̄q systems, however, the situation is different.

Let us denote

〈0|Jj
λ|πk(p)〉 = ifπδ

jkpλ , (2.10)

where j, k are isospin indices and Jλ is the weak charged
current, so that 〈0|J1−i2

λ |π+(p)〉 = ifπpλ. Similarly,

〈0|J4−i5
λ |K+(p)〉 = ifKpλ. Experimentally [20],

fπ = 92.4 MeV, fK = 113 MeV . (2.11)

Analogous constants enter in the leptonic decays of the
vector mesons. The rate for the decay M+

ij̄
→ ℓ+νℓ,

where ℓ = µ or e, is

Γ(M+
ij̄

→ ℓ+νℓ) =
|Vij |2G2

F f
2
Mij̄

mMij̄
m2

ℓ

4π

[

1− m2
ℓ

m2
Mij̄

]2

(2.12)

where here Vij = Vud for M+
ud̄

= π+ and Vus for

M+
us̄ = K+. Since Mij̄ is a qiq̄j bound state, this rate is

proportional to |ψ(0)|2. With the normalization of ψ(r)
in the nonrelativistic quark model determined by the con-
dition

∫

d3r|ψ(r)|2 = 1, it follows that for a given 1S0 or
3S1 qiq̄j meson M ,

fM ∝ |ψM (0)|
m

1/2
M

. (2.13)

Hence,

|ψK(0)|
|ψπ(0)|

=
fK
fπ

(

mK

mπ

)1/2

= 2.3 . (2.14)

The difficulty of deriving this ratio from the NQM was
noted early on as the van Royen-Weisskopf “paradox”
[35].
Conventionally, in the context of the quark model,

the ρ–π mass difference was explained by means of a
very strong chromomagnetic, i.e., color hyperfine (chf)
splitting between these particles. The similar, although
smaller, mass difference between the K∗ and K was also
explained by this color hyperfine interaction. Taking ac-
count of color, the Hamiltonian for the color hyperfine
(chromomagnetic) interaction has the form

Hchf =
vchf (r)

MiMj
(~λi · ~λj)(~σi · ~σj) , (2.15)

where the function vchf (r) involves the overlap of the in-
teracting constituent (anti)quarks. Recall that the prod-
uct ~σi · ~σj is equal to 1 and −3 times the identity matrix
I2×2 when the qi and q̄j spins are coupled to S = 1 and
S = 0, respectively. Similarly, the product of SU(3)c

color matrices ~λi · ~λj is equal to −16/3 and −8/3 times
I3×3 if the colors are coupled as 3 × 3̄ → 1 (meson) and
3× 3 → 3̄ (baryon), respectively. The resultant 1 : (−3)
ratio of mass shifts in S = 1 and S = 0 qq̄ mesons or
quark pairs in baryons and the 1 : (1/2) ratio of the color
factor for qq̄ mesons versus qq interactions in baryons
yield good fits to meson and baryon masses. The depen-
dence ofHchf on 1/(MiMj) is also important for this suc-
cessful fit. In the NQM as applied here, vchf (r) ∝ δ3(r),
so that the color hyperfine shifts evaluated to first order
in Hchf are proportional to |ψ(0)|2 (where the subscript
M on ψ is suppressed in the notation) [17]. This is anal-
ogous to the hyperfine splitting in hydrogen, which is
also proportional to the square |ψ(0)|2 of the hydrogenic
wavefunction at the origin. We focus here on the 1S0 and
3S1 isovector mesons, i.e., the π and ρ, absorb the color
factor into the prefactor and thus write, for the energy
due to Hchf ,

Ehcf =
A〈~σi · ~σj〉|ψ(0)|2

MiMj
. (2.16)

The meson mass to zeroth order in Hchf is denoted m0.
Then the physical masses are

mρ = m0 +
A|ψ(0)|2
M2

ud

(2.17)

and

mπ = m0 −
3A|ψ(0)|2
M2

ud

. (2.18)

Equivalently,

m0 =
3mρ +mπ

4
(2.19)

and

A =
(mρ −mπ)M

2
ud

4|ψ(0)|2 . (2.20)

Numerically, m0 = 620 MeV and the color hyperfine
splitting is

(∆E)chf = mρ −mπ =
4A|ψ(0)|2
M2

ud

= 640 MeV . (2.21)

The color hyperfine interaction also plays an important
role in splitting the K and π, since their mass difference,
mK −mπ ≃ 360 MeV, exceeds, by about a factor of 3,
the difference in current-quark masses, ms −md ≃ 120
MeV. In the NQM, this is attributed to the fact that
the color hyperfine interaction energy −a/M2

ud for the π
(with a > 0) is negative and larger in magnitude than
the corresponding energy −a/(MudMs) for the K, since
Ms > Mud.
The large size of the splitting (2.21) shows that the

color hyperfine interaction is not a small perturbation on
the zeroth-order Hamiltonian value, m0. Furthermore,
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the strongly attractive, short-range color hyperfine in-
teraction has the effect of contracting the pion to a size
substantially smaller than the size indicated by exper-
imental data on the charge radius and σπN scattering
cross section. Moreover, since vchf (r) ∝ δ3(r), which
is clearly sensitive to short-distance interactions between
quarks, there is a problem of internal consistency when
one uses a color hyperfine interaction in the context of the
nonrelativistic quark model, since at short distances, be-
cause of asymptotic freedom, the light quarks behave in
a relativistic quasi-free manner with their small, current-
quark masses, not as nonrelativistic, massive, constituent
quarks.
The fact that Mud/Ms ≃ 0.7 has two countervailing

effects on the relative charge radii of the π+ and K+.
First, since the reduced mass µK is slightly greater than
µπ (c.f. Eqs. (2.8) and (2.9)), it is plausible that the
corresponding meson could be somewhat smaller. Yet
the very important attractive color hyperfine interaction
should make

√

〈r2〉K+ larger than
√

〈r2〉π+ .
We proceed to discuss some properties of the color hy-

perfine interaction further. Since an attractive interac-
tion involving a δ3(r) function potential is inconsistent
in the nonrelativistic constituent quark model, we model
vchf (r) as a spherical square well of depth V0 and ra-
dius r0. The dimensionless quantity fixing the number
of bound states is the ratio of the strength V0 of a po-
tential to the kinetic energy of a particle bound by this
potential in a region of size r0, namely Ekin ≃ p2/(2µ) =
π2/(2µr20) (Ekin = p = π/r0, relativistically). The ra-
tio V0/Ekin = 2µV0r

2
0/π

2. Since µ is determined by Eq.
(2.7), we thus fix the product V0r

r
0 . One knows from

general QCD theory that at distances r << 1/ΛQCD,
the static quark potential has the Coulombic form

Vqq̄ =
C2fαs

r
for r <<

1

ΛQCD
, (2.22)

where C2f = 4/3 is the quadratic Casimir invariant for
the fundamental representation of SU(3)c and the loga-
rithmic dependence of the running αs on r is left implicit.
At distances of order 1/ΛQCD, Vqq̄ has a linear form re-
sulting from the chromoelectric flux tube joining the q
and q̄,

Vqq̄ = σr for r ∼ 1

ΛQCD
, (2.23)

where σ = 1/(2πα′) ≃ (400 MeV)2 is the string tension
with α′ the Regge slope. To illustrate the nature of the ρ-
π puzzle, let us consider an infinite square well potential,
which provides a simple model of confinement. The (unit-
normalized) ground state wavefunction is

ψ(r) =

(

π

2r30

)1/2 (
sin pr

pr

)

(2.24)

where

p =
π

r0
. (2.25)

With this potential, one has

〈r2〉 =

∫

r2|ψ(r)|2d3r

=

(

1

3
− 1

2π2

)

r20 , (2.26)

so that
√

〈r2〉 = 0.532r0. The measured value of 〈r2〉π
then determines r0 = 1.26 fm. Denoting 〈r2〉 ≡ d2, one
can write

|ψ(0)|2 =
c

d3
(2.27)

with c a constant. In this model,

c =
π

2

(

1

3
− 1

2π2

)3/2

= 0.236 (2.28)

Substituting the value of |ψ(0)|2 from Eq. (2.24) into Eq.
(2.21), we find

(∆E)chf =
2πA

M2
udr

3
0

(2.29)

so that

A =
(mρ −mπ)M

2
udr

3
0

2π
= 3.1 (2.30)

Thus, both the large shift in Eq. (2.21) and the rather
large value of the coefficient A show that the NQM treat-
ment of the very strong, short-range hyperfine interaction
as a perturbation is not really justified. As could be ex-
pected on general grounds, such a strong short-range in-
teraction has the effect of producing a pion wavefunction
that is smaller in spatial extent than is experimentally
observed. In effect, the pion - which, by definition, is the
ground state in the attractive 1S0 pseudoscalar channel
- is “swallowed”, i.e., squeezed into a contracted state of
radius much smaller than that of the ρ. The wavefunc-
tion for the ρ itself slightly expands relative the origi-
nal common unperturbed π and ρ wavefunctions, due to
the repulsive color hyperfine interaction in the 3S1 vector
channel (which is 1/3 as strong as the attraction in the
1S0 channel). The NQM puzzle of a very light pion thus
extends also to its expected much smaller size. In gen-
eral, any extra, attractive, potential that binds the pion
more strongly than the ρ yields a π that is smaller than
the ρ. The only way to maintain a common shape for
the ρ and π wavefunctions in a nonrelativistic potential
model framework is to have vchf (r) constant as a func-
tion of r, which is very different from the NQM’s form
vchf ∝ δ3(r).

III. A PHYSICAL PICTURE OF

APPROXIMATE NAMBU-GOLDSTONE BOSONS

NJL-type models do succeed in producing a massless
or nearly massless pion in a bound-state picture, as was
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shown first via a solution of the Bethe-Salpeter equation
in the 1S0 channel in the original work by Nambu and
Jona Lasinio [14] (with an appropriate reinterpretation
of the four-fermion operator as involving quarks rather
than nucleons in a modern context [24]). However, the
coupling of the four-fermion operator is not calculated
directly from the underlying QCD theory. Furthermore,
this four-fermion operator posits that the spontaneous
chiral symmetry breaking is a contact interaction, and
thus does not directly include the physically appealing
mechanism for SχSB as being a consequence of helicity
reversal due to confinement [1].

An important insight for understanding the pion as
a qq̄ bound state and also an approximate Nambu-
Goldstone boson has been the argument by Brodsky and
Lepage that the physical pion state contains not just the
valence |qq̄〉 state, but large contributions from higher
Fock states such as |qq̄ + ng〉, |qq̄qq̄〉, |qq̄qq̄ + ng〉 (g =
gluon), etc. [36]. These higher Fock space states can
account for much of the size of the physical pion. This
view is in accord with the Goldstone phenomenon in con-
densed matter physics, where a Goldstone excitation is a
collective state (e.g., a quantized spin wave or magnon in
the case of a ferromagnet). This insight has been deep-
ened with further work using the light front formalism
[37]. Recently, Brodsky and de Téramond have used
AdS/QCD methods to calculate hadron masses includ-
ing mπ, and also fπ, 〈r2〉π+ , and the pion electromag-
netic form factor Fπ+(q2) in the spacelike and timelike
regions [38].

Another approach is provided by approximate solu-
tions to Dyson-Schwinger and Bethe-Salpeter equations.
In addition to phenomenological four-fermion NJL-type
kernels for the Bethe-Salpeter equation [14, 24], these
have involved quark-gluon interactions in an effort to
model QCD [23, 39]. These equations capture some of the
relevant physics, although they do not directly include ef-
fects of confinement or nonperturbative effects due to in-
stantons. Confinement means that both quarks and glu-
ons have maximum wavelengths, i.e., minimum bound-
state momenta, which affect chiral symmetry breaking
[40]. (Solutions of Dyson-Schwinger and Bethe-Salpeter
equations have also been used to investigate the depen-
dence of the hadron mass spectrum on the number of
light flavors in a general asymptotically free, vectorial
nonabelian gauge theory [41].)

Thus, there has been continual progress in understand-
ing the pion (and kaon) as both a qq̄ bound state and an
approximate Nambu-Goldstone boson. Here we would
like to present a rather simple heuristic picture of this
physics which, we believe, contributes further to this
progress. For technical simplicity, we restrict ourselves
to the large-Nc limit, in which quark loops have a negli-
gibly small effect. In this limit a simple proof that spon-
taneous chiral symmetry breaking occurs was constructed
by showing that the ’t Hooft anomaly matching condi-
tions [3] for massless u and d quarks must be realized in
the physical spectrum via a massles Nambu-Goldstone

pion rather than massless nucleons [4]. To motivate our
picture, we note several elements that were missing in the
nonrelativistic quark model approach to the ρ-π puzzle:

(i) We need a natural mechanism for producing a suffi-
ciently strong qq̄ interaction in the 1S0 channel to reduce
the mass of the bound state so that, up to electroweak
corrections, it vanishes in the limit of zero current-quark
masses.

(ii) We would like the same physical picture to ex-
plain how the pion is both a qq̄ bound state and an ap-
proximate Nambu-Goldstone boson whose masslessness
follows from the spontaneous breaking of the SU(2)L ×
SU(2)R global chiral symmetry down to the diagonal,
vectorial SU(2)V and whose interactions involve deriva-
tive couplings, which vanish as qµ → 0. As part of this, it
is desirable that the picture should yield the Gell-Mann-
Oakes-Renner (GMOR) formula for the pion (and kaon)
mass [42, 43].

(iii) We would like to resolve the Van-Royen Weisskopf
“Paradox” [35] and explain how the quark wavefunction
of the pion at the origin, ψπ(0), can be ∝ mπ

1/2 and thus
be consistent with a finite value of fπ in the chiral limit
where mπ → 0.

(iv) Finally, we would like to understand how an ap-
proximate Nambu-Goldstone boson such as the pion,
which appears quite different from other hadrons, can
have, as indicated by experiment, roughly the same size
as these other hadrons.

We next present our new picture and show how it ad-
dresses these questions. As is well-known, if a quark
has zero current-quark mass, the covariant derivative q̄D/
q in the QCD Lagrangian, preserves chirality. A dynam-
ical, constituent quark mass can be generated via an ap-
proximate solution of the Dyson-Schwinger equation for
the quark propagator. In the one-gluon exchange ap-
proximation one finds a nonzero solution for the effec-
tive quark mass M if C2fαs = (4/3)αs

>∼ O(1). In
this framework, the dynamical quark mass M is thus
the consequence of a sufficiently strong quark-gluon cou-
pling at the relevant scale, αs(µ) at µ ∼ ΛQCD. This
dynamical quark mass can also be seen to result from
the helicity reversal due to confinement [1]. These two
approaches can also be seen to connect with the NJL-
type analysis, with M ≃ G〈q̄q〉 ≃ 〈q̄q〉/(2πf2

π), where G
denotes the NJL four-fermion coupling. If one restricts
oneself to a quenched approximation in which there are
no quark loops, then the presence of higher Fock space
states with qq̄ pairs inside a meson with its valence con-
stituent quarks can be regarded as being due to a kind
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of zitterbewegung motion of these valence quarks. Light-
quark mesons which are not approximate NGB’s, such as
the ρ, can be modelled satisfactorily as being composed
simply of a constituent quark and constituent antiquark.
The effective size of this constituent qq̄ bound state is
of order 1/Mud. The application of the nonrelativistic
constituent quark model to such mesons is reasonable,
with the constituent quarks moving in an approximately
nonrelativistic fashion under the assumed confining po-
tential, with a weakly repulsive hyperfine interaction for
the ρ meson.
In the pion, however, the interaction at all scales is

(strongly) attractive. This is manifested in the Euclidean
pseudoscalar correlator. We recall that several general
properties of hadrons have been understood on the ba-
sis of Euclidean correlation function inequalities [8]-[12].
Let us consider the Euclidean correlation function for a
pseudoscalar qq̄ bound state,

P (x, y) = 〈[ū(x)γ5d(x)][d̄(y)γ5u(y)]〉 . (3.1)

Performing the Gaussian fermionic (Grassman) integra-
tion in the path integral yields

P (x, y) =

∫

dµ(Aν(x))S(A)
†(x, y)S(A)(x, y) , (3.2)

where dµ(Aν(x)) is the positive measure of the Euclidean
path integral, including the eSG factor from the gauge
part of the action, where

SG =
1

4
GµνG

µν , (3.3)

and the fermionic determinant is absent in the quenched
approximation used here. In Eq. (3.2), S(A)(x, y) is
the propagator of the quark (a light u or d quark) mov-
ing from the initial position y to the final position x,
in the presence of the background gauge field Aµ(x) ≡
∑

a TaA
a
ν(x). S(A)

†(x, y) denotes the Hermitian adjoint
of S(A)(x, y) in color and Dirac space. We use the rela-
tion

γ5S(A)(y, x)γ5 = S(A)†(x, y) . (3.4)

This property is unique to γ5 and is not shared by any
of the other 16 Dirac matrices. It ensures that the path
integrand is positive for all field configurations, making
P (x, y) larger than all other Euclidean (scalar, vector,
axial-vector, and tensor) correlators. Asymptotically,
when |x − y| → ∞, any correlator C(x, y) behaves, up
to a power-law prefactor, as

C(x, y) ≃ exp(−m0|x− y|) (3.5)

where m0 is the mass of the lightest physical state with
the quantum numbers of the correlator considered. This,
together with the inequality

P (x, y) ∼ exp(−mπ|x− y|) ≥ any C(x, y) (3.6)

guarantees that the pion is, indeed, the lightest meson.
Furthermore, the positivity of P (x, y) for any |x− y| and
the fact that S(x, y) is a monotonically decreasing func-
tion of |x− y| implies that the effective quark-antiquark
potential in the pion (to the extent that this nonrelativis-
tic language is appropriate) is attractive at all relative
distances.

As we noted in the previous section, in the nonrela-
tivistic quark model a very strong hyperfine interaction
between the quark and antiquark in the pion is needed in
order to reduce its mass nearly to zero, and such an inter-
action tends to produce a wavefunction for the valence qq̄
in the pion that is restricted to a very small spatial extent
(almost collapsed). Following this lead, we suggest that
while the spacetime (or Euclidean) picture of a q̄q vec-
tor meson is two wool-ball-like single strands of valence
quark and anti-quark lines, the pion is a double strand,
namely closer valence q̄ and q world lines whose motion
forms a single wool-ball-like configuration. According to
this picture, in the pion, but not in the ρ etc., the valence
q̄ and q lines with collinear momenta track each other at
a distance that is shorter than 1 fm. This is similar to
NJL-type models, in which, by construction, the impor-
tant interaction is of short range. Thus, in our picture the
pion qualitatively differs from the ρ as a nearly Nambu-
Goldstone particle should and, at the same time, can be
consistently considered as a q̄iqj state. Here and below,
analogous comments, with obvious changes for the heav-
ier ms, apply for the K and its comparison with the K∗.

It is well known from discussions of the chiral anomaly
[4]-[9] that a massless collinear quark and antiquark of
opposite helicity, correponding to the bilinear operator
product ψ̄γ5ψ, can mimic the pole of a massless pseu-
doscalar particle and replace the latter in the calculation
of the anomaly. Here we suggest that such a configura-
tion, including the effect of spontaneous chiral symmetry
breaking, can represent the massless pion, explain the
puzzling strong color hyperfine interaction between the
qi and q̄j , and can account for its behavior as a light,
approximate Nambu-Goldstone boson. In general, one
would expect from the basic quantum mechanical rela-
tion (∆pi)(∆ri) >∼ ~ that restricting the q and q̄ to a
small interval along some axis x̂i would entail large mo-
menta along this axis. However, in the presence of an ap-
propriate gluonic field configuration, the gauge-covariant
momentum pµI− gT aAa

µ can vanish.

We address the questions posed above, starting with
(i). There are two sources of explicit chiral symmetry
breaking, namely finite quark masses and the presence
of nonzero electroweak interactions. For our present dis-
cussion we shall imagine that, unless otherwise indicated,
electroweak interactions are turned off. Then a non-zero
pion mass is induced via the explicit chiral symmetry
breaking term mud̄d + muūu in the QCD Lagrangian.
To see this in our picture, we consider the spacetime evo-
lution of the qi and q̄j in a pion, after a Euclidean Wick
rotation. In the QCD context, the qi and q̄j are con-
nected by a chromoelectric flux tube, and their positions
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fluctuate within length scales of order 1/ΛQCD ≃ 1 fm.
We consider a model in which in the pion, but not in the
ρ or other vector mesons, the valence q and q̄ track each
other at a distance h shorter than 1/ΛQCD, at all times.
The constituent quark masses are then less relevant to the
dynamics, being gradually replaced, as h gets smaller, by
their current-quark masses. The point here is that con-
stituent quark masses are consequences of spontaneous
chiral symmetry breaking, which disappears at short dis-
tances (large momenta). In QCD, the scale-dependent
dynamically generated constituenet quark mass decays,
as a function of Euclidean momenta p, like

Mq ∼
〈q̄q〉
p2

(3.7)

up to logs [23], where

〈q̄q〉 ∼ 4πf3
π ∼ Λ3

QCD . (3.8)

More generally,

Mq ∼ ΛQCD

(

ΛQCD

p

)2−γ

, (3.9)

where γ denotes the anomalous dimension of the q̄q oper-
ator; here we use the property that γ is a power series in
the running coupling αs, and αa approaches zero at short
distances because of the asymptotic freedom of QCD. In
our picture it is this “melting away” of the constituent
quark masses at short distance which provides, in the
NQM language, the very strong hyperfine interactions in
the pion.
Next, as an answer to question (ii), we would like to

show how the GMOR relation for the pion and other
pseudoscalar meson masses (aside from the η′), which
embodies the Nambu-Goldstone nature of these pseu-
doscalar mesons, is naturally expected in our picture. Let
the total Euclidean length R = |x| =

√
τ2 + r2, where

τ = it, be the net Euclidean distance travelled by the qq̄
double line describing the valence quark-antiquark in the
pion. The double line describes a random walk with n
straight sections of total length L. When probed at dis-
tances that are short compared with 1/ΛQCD, the quark
masses are the hard, current-quark masses, mu ≃ 4 MeV
and md ≃ 8 MeV. When (mu + md)|x| >∼ 1, the quark
propagation involves the suppression factor e−(mu+md)|x|.
Hence, a characteristic length describing this propagation
is

L ∝ 1

mu +md
. (3.10)

Now the end-to-end distance R for a random walk with
step sizes d (in any dimension) is given by [44]

R2 ∼ d2 n . (3.11)

On average, if the total length of the n-step walk is L
and the step length is d, then

d ≃ L

n
. (3.12)

Hence,

R2 ≃ Ld . (3.13)

Then the basic correlation function relation, Eq. (3.5)
implies that

mπ ≃ 1

R
(3.14)

and hence that

m2
π ≃ mu +md

d
. (3.15)

Since the step size d is connected, via the helicity reversal
process, to the underlying confinement and dynamical
breaking of chiral symmetry, it is natural to equate

1

d
= −〈q̄q〉

f2
π

. (3.16)

(where we follow the usual phase convention for the quark
fields so that, with mq taken as positive, the condensate
〈q̄q〉 < 0). Combining these with Eq. (3.15), we see that
this heuristic analysis yields the GMOR mass relation,

m2
π = − (mu +md)

f2
π

〈q̄q〉 , (3.17)

where 〈qq〉 ≡ 〈∑Nc

a=1 q̄aq
a〉 with q = u or q = d (these

condensates being essentially equal in QCD). A similar
argument, with appropriate replacement of light quark
mass mu or md by ms, yields the analogous GMOR-type
mass relations for the K+ and K0,

m2
K+ = − (mu +ms)

f2
K

〈q̄q〉 (3.18)

and

m2
K0 = − (md +ms)

f2
K

〈q̄q〉 , (3.19)

where 〈q̄q〉 ≃ 〈s̄s〉 for q = u, d.
The nearby q and q̄ paths in our picture generate q–q̄

color interactions that depend on the difference of these
paths. This suggests the possibility of using this picture
to infer the derivatively coupled form of pion interac-
tions appropriate for a Nambu-Goldstone particle. This
derivative coupling means that in the static limit, these
Nambu-Goldstone bosons become non-interacting.
We next address point (iii) above, concerning the rela-

tion fπ ∼ |ψ(0)|/√mπ. Since the matrix element (2.10)
as it enters in the π+ → ℓ+νℓ decay amplitude obvi-
ously involves the annihilation of the u and d̄ quarks
in the π+ to produce the virtual timelike W+ that, in
turn, produces the ℓ+νℓ pair, it clearly depends on the
ud̄ wavefunction in the pion evaluated at the origin of the
relative coordinate, |ψπ(0)|. The question here concerns
what happens in the chiral limit, where mπ → 0. For
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this discussion we again imagine that electroweak interac-
tions are turned off, except that we take into account the
couplings leading to the π+

ℓ2 decay. Now the pion wave-
function at a given time involves the intersection of the
worldlines of its constituent q and q̄ with the t = 0 hyper-
plane in the full R4 Wick-rotated spacetime. This wave-
function has many Fock space components. The matrix
element (2.10) involves the annihilation of the valence
qiq̄j component by the axial-vector current. Higher Fock
space components in the pion wavefunction correspond
to additional crossings of the t = 0 hyperplane. A mea-
sure of the contributions of these additional components
can be obtained from our random walk representation.
We note that for the present purpose it is essentially a
one-dimensional random walk that is relevant, since we
are inquiring about passages across a hyperplane, namely
that defined by the condition t = 0, of codimension 1 in
the full Euclidean R

4. Now in general, the number of
times that a one-dimensional random walk with n steps
returns to the origin is asymptotically ∝ √

n for large
n. The contribution of the valence qq̄ component of
the full pion wavefunction to the annhilation probabil-
ity |ψπ(0)|2 is thus reduced by the factor 1/

√
n. By Eq.

(3.11), n−1/2 ∝ R−1 and by Eq. (3.14), R−1 ≃ mπ, so
|ψπ(0)|2 is reduced by the factor mπ. This means that
|ψπ(0)| ∝ √

mπ in the chiral limit, thereby cancelling
the

√
mπ in the denominator of Eq. (2.13), and yield-

ing a finite value of fπ. Similar remarks apply for fK in
the hypothetical limit of ms → 0 as well as mu,d → 0.
Thus, our picture provides a plausible resolution of the
van Royen and Weisskopf paradox (Eq. (2.13)) [35].
Finally, we address issue (iv) concerning the similar

size of the π and ρ. We should emphasize from the very
outset that this is challenging. The qualitatively differ-
ent physical pictures involved give an indication of the
complexity in the calculation of charge radii. On the one
hand, if the size is controlled by the relatively small sep-
aration h in our picture with double qiq̄j lines, then the
pion should be much smaller than the ρ. On the other
hand, since the distance R ≃ 1/mπ controls the overall
pion size, it follows this size can become, at least formally,
unbounded in the chiral limit mπ → 0. (In practice, pion
wavefunctions centered within a distance R of each other
would overlap and become entangled.) This divergence
in R as mπ → 0 is not an artifact of our picture; the
range of the residual strong force mediated, at long dis-
tance, by pion exchange, formally diverges in this chiral
limit. The property that the pion charge radius also di-
verges in the chiral limit is a natural concomitant of this
divergence in the pion size. Let us elaborate on this.
The charge radius (squared) of a hadron is

〈r2〉 =
∫

ρ(r) r2 d3r , (3.20)

where ρ(r) denotes the charge density. The quantity
√

|〈r2〉| gives one measure of the size of a composite par-
ticle [45]. This is especially clear for a meson such as the
π+ orK+, where the u and, respectively, d̄ or s̄ both con-

tribute positively to the integrand in Eq. (3.20) [45, 46].
The charge radius squared is proportional to the slope

of the electromagnetic form factor F (q2) at q2 = 0 [47]

〈r2〉 = 6
dF (q2)

dq2

∣

∣

∣

q2=0
. (3.21)

The latter form factor satisfies a t-channel dispersion
relation (t ≡ q2)

F (t) =

∫

dt
Im[F (t′)]

t− t′
. (3.22)

In particular, for the case under consideration, F (t) =
Fπ+(t), the integration is from t′ = (2mπ)

2 to t′ = ∞.
In the vector meson dominance approximation for F (t),
one commonly replaces the Im[F (t′)] by a delta func-
tion corresponding to the approximation of zero-width
for the relevant vector meson. Here, using ρ-dominance
for Fπ+(t), one replaces Im[Fπ+(t′)] by a delta function
∝ δ(t′−m2

ρ). This narrow-width approximation, together
with the known value Fπ+(0) = 1, yields

Fπ+(q2) =
m2

ρ

m2
ρ − q2

, (3.23)

so that

√

〈r2〉π+ =

√
6

mρ
= 0.62 fm . (3.24)

This is close to the experimentally measured value, given
above in Eq. (2.1) [34, 48]; quantitatively, it is smaller
than this experimental value by only 7 %. (One can also
include the effects of the ρ width, but this will not be
necessary for our discussion here.) An analogous vector
meson dominance prediction for the K+ charge radius
works very well also [34]. A priori, one might worry that
an additional threshold contribution from t′ ≃ (2mπ)

2

might dominate and lead to 〈r2〉π+ ≃ 1/mπ. However,
this does not happen here because of the derivative cou-
pling of soft pions, as Nambu-Goldstone bosons. In the
particular case here, another reason why this does not
happen is that there is a

√

t′ − 4m2
π factor in Im(F (t′))

that arises from the P -wave nature of the ππ amplitude.
Nevertheless, 〈r2〉π+ does diverge as 〈r2〉π+ ∼ ln(1/mπ)
in the chiral limit where mπ → 0 [49].
We next sketch an estimate of the pion charge radius in

our picture. As in the previous section, the higher Fock
space states play a key role in this estimate. Consider
the t = 0 slice of the Wick-rotated Minkowski space.
The quantity 〈r2〉π+ can be computed as a sum of the
contributions of the various Fock space components of
the pion wavefunction. In our picture these are gener-
ated by crossings of the t = 0 hyperplane by the qiq̄j
random-walking double worldline of the pion. Let the
k’th such crossing be at rk. The first crossing corre-
sponds to a π+, say, moving forward in time. Hence,
we have a charge +1 at this location. At the second
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crossing, the pion line is reversed, and we have a −1
charge at r2, etc. The definition Eq. (3.20) above then
yields 〈r2〉π+ ≃ ∑∞

k=1(−1)kr2k, where here rk ≡ |rk|.
Recalling that the k’th visit to the t = 0 plane hap-
pens typically after n ≃ k2 steps of the random-walking
double line, with individual step size d, we deduce that,
on average, r2k ≃ k2d2. By itself, this would yield, for
〈r2〉π+ , the sum

∑∞
k=1(−1)kk2d2. The terms in the

above oscillating sum diverge as k → ∞. However, to
get the actual sum, we must take into account the fact
that the contributions are regularized by the exponential
exp[−(mu + md)L] ≃ exp[−(mu + md)k

2d] controlling
the total length of the random-walking double line. Us-
ing mu +md = dm2

π from Eq. (3.15) above and defining

b ≡ mπd , (3.25)

we can rewrite the charge radius as

〈r2〉π+ ≃
∞
∑

k=1

(−1)kk2d2e−k2b2 . (3.26)

Since k gets very large in the chiral limit, there are strong
cancellations between successive terms, rendering an ac-
curate estimate difficult. We can at least investigate the
nature of the leading divergence in 〈r2〉π+ . To do this,
we replace the above sum, after subtracting and adding
an r0 term and symmetrizing, by an integral over the
variable ξ = kb = kmπd:

I(b) =
1

m2
π

∫ ∞

−∞

dξ ξ2 exp

(

iπξ

b
− ξ2

)

=

√
π

2m2
π

(

1− π2

2(mπd)2

)

exp

[

−
(

π

2mπd

)2
]

(3.27)

The key observation here is that, while we have, as ex-
pected, an explicit 1/m2

π factor in front, the integral
I(b) and any finite derivative thereof, contain the fac-
tor exp[−π2/(2mπd)

2], which vanishes with an essential
zero in the chiral limit mπ → 0. This can be seen as
a consequence of the strong cancellations between dif-
ferent terms contributing to the sum, which we approx-
imated as an integral. Thus, our calculation shows the
absence of a divergence of the power-law form 1/m2

π+ in
〈r2〉π+ and is consistent with the chiral perturbation the-
ory result that 〈r2〉π+ diverges like ln(1/mπ) in this limit.
For the real world with nonzero current quark masses for
u and d, our analysis above naturally yields a value of
〈r2〉π+ ∼ d2, since this was the r0 term in the sum. A
similar conclusion, with appropriate replacement of the
d with the s quark, applies to 〈r2〉K+ in the SU(3) chiral
limit mu, md, ms → 0.
Our picture can also give a plausible explanation of

why the pion-nucleon cross section σπN at energies above
the resonance region can be comparable to the inferred

value of σρN at the same energies (c.f. Eqs. (2.4) and
(2.6)). Relevant to the πN cross section is the fact that
the valence quarks in the pion propagate in an extended
double-line manner covering an area of order R2 ∼ 1/m2

π.
However, because of the strong color hyperfine interac-
tion, the separation h of the valence qi and q̄j in the
pion is rather small in our model. Hence, while in a
crossing of two qiq̄j pairs at an ordinary hadronic dis-
tance ∼ d, the probability of an interaction is O(1), here,
in contrast, it will be O((h/d)2). In the context of a
hadronic string picture, the small pion mass is related
to the separation h via mπ ∝ σh, where σ is the the
hadronic string tension. Hence, one may roughly esti-
mate that the πN cross section σπN contains the factors
(πR2)(h/d)2 ∝ π/(σd)2. Note that the factor of m2

π can-
cels out between numerator and denomator, leaving σπN
proportional to an expression involving the string tension
and a typical hadronic distance scale, which are the same
for the π and the ρ.

In the preceeding we have presented our efforts to show
how our picture of a rather tightly bound qiq̄j pair un-
dergoing a random walk inside a pion can explain how
this particle can exhibit the properties of an approxi-
mate Nambu-Goldstone boson while also being under-
standable as a qq̄ bound state. Ultimately, one should
be able to find the differences predicted by our picture
as compared with other approaches to this physics. One
theoretical tool that is relevant here is lattice gauge the-
ory. However, one faces not only the technical difficulty
of simulating very light quark masses and light pions. An
additional challenge is that in (Euclidean) lattice simu-
lations one first integrates over the fermionic degrees of
freedom. Having the two (say u and d̄) quark propaga-
tors in the same background color field may not allow
one to verify that at all intermediate steps the quark and
antiquark are really close to each other. One may need
to go back to the sum over fermionic paths in order to
actually detect the propagators of the nearby qiq̄j pair.

One implication of our model with the nearby qiq̄j
lines separated by a relatively small distance h is that
the purely gluonic exhange amplitude for ππ scatter-
ing should be rather small. A recent lattice calcula-
tion of the I = 2 ππ S-wave scattering length ob-
tained the result a2 ≃ −0.043/mπ [52], in agreement
with the Weinberg-Tomozawa soft-pion current algebra
result a2 = −mπ/(16πf

2
π) = −0.044/mπ [53, 54]. In a

hypothetical ππ′ scattering, where the π′ is comprised
of d̄′ and u′ quarks that are degenerate with the ordi-
nary u and d but do not mix with them, the scattering
amplitude involves only gluon exchanges, but not quark
interchanges. In this case a preliminary lattice calcula-
tion has obtained a ππ′ scattering length considerably
smaller than a2, in qualitative agreement with our dis-
cussion above [55].
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IV. SOME COMMENTS ON THE K → π AND

HEAVY QUARK TRANSITION FORM FACTORS

The K mesons undergo semileptonic Kℓ3 decays, such
as K+ → π0ℓ+νℓ, K

0
L → π+ℓ−ν̄ℓ, and K0

L → π−ℓ+νℓ,
mediated by the vector part of the weak charged cur-
rent. The almost conserved vector current (CVC) (con-
served apart from SU(3) flavor-breaking effects) helps to
fix the corresponding hadronic matrix elements and the
Cabibbo-Kobayashi-Maskawa (CKM) quark mixing ma-
trix element |Vus| [57] and tests of three-generation CKM
unitarity [58]. Denoting the 4-momenta p = pK +pπ and
q = pK − pπ, one has

〈π0|(V−)λ|K+〉 = 〈π−|(V−)λ|K0
L〉 =

1√
2
(f+(q

2)pλ + f−(q
2)qλ) ,(4.1)

where (V−)λ is the weak charged current. The contri-
bution from the f−(q

2) term is proportional to the final
lepton mass squared and is negligible for semileptonic de-
cays to final electrons. The t ≡ q2 variation of f+(t) over
the range m2

e ≤ t ≤ (mK −mπ)
2 can be approximated

by a linear function of t:

f+(t) = f+(0)

(

1 + λ+
t

m2
π

)

, (4.2)

where λ+ = 0.0288, [20], in agreement with chiral per-
turbation theory calculations [49, 50] and also with the
expectation from simple K∗ vector meson dominance.
CVC implies that f+(q = 0) = 1 in the hypothetical limit
of exact SU(3)V symmetry, mu = md = ms and hence
mK = mπ. A general result which we will elaborate on
later is that the corrections to this symmetry-limit value
are always second-order in SU(3)V breaking. This is the
well-known Ademollo-Gatto theorem [32]. This feature
is evident in the explicit estimate [59, 60]

f+(0) = 1− 5(m2
K −m2

π)
2

384π2f2
π(2m

2
K +m2

π)
= 0.985 (4.3)

The correction term in Eq. (4.3) arises from multi-
particle contributions to the sum-rule corresponding to
the commutator [Q4+i5, Q4−i5] = Q3 +

√
3Q8, where the

subscripts refer to SU(3) flavor generators. Formally,
this sum rule underlies the Ademollo-Gatto theorem;
the multi-particle contributions are squares of matrix
elements of the divergence ∂µJ

µ
4+i5 of the strangeness-

changing weak vector current, making the deviation from
universality quadratic in the SU(3)V symmetry break-
ing. However, as is also evident in (4.3), in the limit of
SU(3)L × SU(3)R chiral symmetry, with mπ → 0 and
mK → 0, the correction term is actually of first-order
[59]. This is a consequence of the fact that in this chiral
limit the contributions to the sum rule that involve the
exchange and propagation of massless π’s and K’s lead
to a deviation from universality that is linear inm2

K . The

correction in Eq. (4.3) is small partly because of the nu-
merical coefficient arising from the loop diagram involved
in the calculation.
It is instructive to see how the Ademollo-Gatto the-

orem is realized in the NQM, where the form factor
f+(q

2) can be expressed as an overlap of the K+ and
π+ wavefunctions, which we shall denote FK→π(q

2). In
the NQM, the π+ and K+ consist of nonrelativistic con-
stituent quarks qiq̄j and for L = 0, and:

FK→π(q = 0) =

∫

d3rψπ(r)
∗ψK(r) . (4.4)

In this model theK and π wavefunctions (which are real)
depend on just an overall flavor independent potential
V (r) and on the reduced masses µK and µπ. We recall
our notation Mq for the constituent mass of a quark q,
and the values Mu = Md ≡ Mud ≃ 330 MeV, Ms ≃ 470
MeV.
For simplicity we use the single-term form for the po-

tential:

Vqq̄(r) = V0

(

r

r0

)ν

, (4.5)

where ν is an exponent. Special cases include (i) ν = −1,
i.e., Coulombic, (ii) ν = 0, with V (r) ∝ ln r; (iii) ν = 1,
linear; (iv) ν = 2, harmonic oscillator; and (v) ν = ∞,
equivalent to an infinite square-well (ISW) potential. As
was noted above, a realistic quark-quark potential has
different forms at short distances and at distances of or-
der 1/ΛQCD ∼ 1 fm, so it is more complicated than a
single-term form. However, the simplification will suf-
fice for our purposes here. The scaling properties of
the Schrödinger equation imply that the spatial extent r
characterizing the falloff of the wavefunction scales with
the reduced mass µ as [18, 61]

r ∝ µ− 1
2+ν . (4.6)

For the range of µ considered here, the dependence of
this characteristic distance on ν is thus maximal for the
Coulombic, ν = −1, case and minimal for ν = ∞, where
the spatial extent of ψ is determined completely by the
width of the infinite square well and is independent of µ.
For ν = 2, i.e., the harmonic oscillator potential, which

we write as V = kr2/2, the wavefunction is proportional
to a Hermite polynomial, and, for the ground state, it is

ψ =
(µk)3/8

π3/2
exp

(√
µk r2

2

)

. (4.7)

Substituting this into Eq. (4.4), we calculate

FK→π(0) =
23/2(µKµπ)

3/8

(
√
µK +

√
µπ )3/2

. (4.8)

Let us define the following measure of flavor SU(3) sym-
metry breaking:

ǫ =
Ms −Mud

Mud
. (4.9)
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The expression for FK→π(0) in Eq. (4.8) has the follow-
ing Taylor series expansion in ǫ:

FK→π(0) = 1− 3

256
ǫ2 +O(ǫ3) for ν = 2 (4.10)

With the values of µπ and µK given above,

FK→π(0) = 0.999 for ν = 2 . (4.11)

For comparison, consider the Coulomb potential with
ground-state

ψ =
e−r/a

π1/2a3/2
(4.12)

where

aB =
1

C2fαsµ
(4.13)

is the Bohr radius and C2f = 4/3. Substituting this into
Eq. (4.4) for the wavefunction overlap, we find

FK→π(0) =

(

2
√
aKaπ

aK + aπ

)3

=

(

2
√
µKµπ

µK + µπ

)3

= 0.992 (4.14)

This again has a Taylor series expansion of the form
FK→π(0) = 1 − O(ǫ2), as expected from the Ademollo-
Gatto theorem. Since the r-dependences of the logarith-
mic (ν = 0) and linear (ν = 1) potentials are intermedi-
ate between the harmonic oscillator (ν = 2) and Coulomb

(ν = −1) potentials, one expects F (q = 0) to be very
close to unity for these potentials as well.

These results do not imply such small deviations from
unity for the form factor f+(0) in Ke3 decay. The mass
difference mK −mπ ∼ 360 MeV far exceeds the value of
ms −mu expected in a model with a flavor-independent
confining potential. Such considerations would apply
better to semileptonic s→ u decays of mesons with heavy
c or b spectator quarks. Indeed mDs

−mDu
= 104 MeV

and mBs
−mBu

= 89 MeV, consistent with the current
quark mass difference ms − mu. Unfortunately, these
small mass differences imply tiny branching for these de-
cays Ds → Duℓ

+νℓ and Bs → Buℓ
+νℓ.

The generic form factor is a Lorentz-invariant function
of q2. However, for elastic scattering, one can go to a
frame where q0 = 0 so that q2 = −|q|2 and write

F (q2) =

∫

d3reiq·rψπ(r)
∗ψK(r) , (4.15)

where q = (q0,q) is the momentum imparted to the lep-
tons in the decay process, r = rq−rq̄, and ψK and ψπ are
the initial and final meson wavefunctions. In the flavor
SU(3) symmetry limit, ψK = ψπ. For q = 0, the normal-
izations of the wave functions imply the conserved vector
current (CVC) value F (0) = 1.

The last result is quite general; if the mesons contain,
in addition to the valence quarks qi and q̄j , any number
of gluons at the position Rs and/or qq̄ quark pairs at the
positions rℓ, rℓ′ , we would have, instead of (4.15),

FK→π(q
2) =

∫

d3r eiq·r
[

∏

ℓ,ℓ′,s

d3rℓ d
3rℓ̄′ d

3Rs ψπ(r, rℓ, rℓ̄′ ,Rs)
∗ψK(r, rℓ, rℓ̄′ ,Rs)

]

, (4.16)

so that again in the flavor SU(3) symmetry limit, for
equal wavefunctions and q = 0, we have F (0) = 1.
Here, ψK and ψπ are the Fock space wavefunctions with
any number of gluons and quark-antiquark pairs. Both
quarks and gluons carry spin and color, so that ψ could be
a superposition of many color and spin couplings which
yield overall color singlets. For notational simplicity we
have omitted these above. The general arguments pre-
sented below do not depend on the slightly simpler form
of (4.16).
As is evident in eqs. (4.15) and (4.16), deviations from

F (0) = 1 can be caused in two ways. First, even for
elastic transitions with ψinitial = ψfinal, the momen-
tum transfer factor eiq·r modulates the positive integrand

and decreases F . Second, flavor SU(3) breaking, namely
the difference between ms and mq, q = u, d, causes the
π+ and K+ wavefunctions to be different and hence re-
duces f+(0) from unity. To analyze this, we shall use the
Cauchy-Schwarz inequality, that for any vector space V
with vectors ψ and φ and an inner product 〈ψ, φ〉, the
property

|〈ψ, φ〉| ≤ ‖ψ‖ ‖φ‖ (4.17)

holds, where ‖ψ‖ ≡
√

〈ψ, ψ〉). We apply this to
the L2 Hilbert space of square-integrable functions
ψ(r, rℓ, rℓ̄′ ,Rs) with the inner product
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〈ψ, φ〉 =
∫

d3r
[

∏

ℓ,ℓ′,s

d3rℓ d
3rℓ̄′ d

3Rs ψ(r, rℓ, rℓ̄′ ,Rs)
∗φ(r, rℓ, rℓ̄′ ,Rs)

]

. (4.18)

Thus,

FK→π(q = 0) = 〈ψπ, ψK〉 . (4.19)

Using this, we have

|FK→π(q = 0)|2 =

∣

∣

∣

∣

∫

d3r
[

∏

ℓ,ℓ′,s

d3rℓ d
3rℓ′ d

3Rs ψπ(r, rℓ, rℓ̄′ ,Rs)
∗ψK(r, rℓ, rℓ̄′ ,Rs)

]

∣

∣

∣

∣

2

≤
[
∫

d3r
[

∏

ℓ,ℓ′,s

d3rℓ d
3rℓ′ d

3Rs|ψπ(r, rℓ, rℓ̄′ ,Rs)|2
]

][
∫

d3r
[

∏

ℓ,ℓ′,s

d3rℓ d
3rℓ′ d

3Rs|ψK(r, rℓ, rℓ̄′ ,Rs)|2
]

]

(4.20)

where we write these for the general case of Eq. (4.16)
above.
Universal form factors at the no-recoil point for

semileptonic decays of mesons containing heavy quarks,
e.g., Bd → D−ℓ+νℓ, follow from the fact that for mb >
mc >> ΛQCD, the heavy quark is a static source of color
(transforming as a color SU(3) triplet) with common
wavefunctions for all of the light degrees of freedom in
either the B or D mesons [62]. With flavor-independent
primary QCD interactions, the difference between ψK

and ψπ is due to the different u and s masses only. From
the Cauchy-Schwarz inequality one sees that F (q = 0),
as a function of ms and ms −mu, is extremal (maximal)
at ms − mu = 0. Hence the deviation from unity is of
order O((ms −mu)

2), which is the Ademollo-Gatto the-
orem [32]. The analogous theorem for heavy quarks is
derived by the same type of reasoning [63, 64]. Let us
rewrite (4.20) as

FB→D(q = 0)[mi(“light
′′), v = mi/MQ] (4.21)

where mi(“light
′′) refers to the masses of the degrees of

freedom that are light relative tomQ, namely ΛQCD, ms,
etc. and MQ denotes the mass of the lighter among the
heavy quarks, namelymc in the present case. Again, F is
extremal for v = 0, and the deviations from universality
at the no-recoil point are of order O(v2) = O(1/m2

Q),

i.e., O(1/m2
c) in b→ c transitions. Indeed, if the current

quark masses mu = md = 0, then, when ms → 0, the
chiral symmetry group is enlarged from SU(2)L×SU(2)R
to SU(3)L × SU(3)R (and the QCD condensates would
then break these to the respective diagonal subgroups
SU(2)V and SU(3)V ).
The generalized Ademollo-Gatto theorem can be for-

mulated in Hamiltonian lattice QCD. The π andK wave-
functions are replaced by wavefunctionals with arbitrary

patterns of excited links, corresponding to gluonic exci-
tations, and/or extra qq̄ pairs. Now consider the ma-
trix element of the strangeness-changing vectorial weak
charge, Qu,s̄ =

∫

d3xV 0, where V µ denotes the associ-
ated current. This converts flavors s→ u for the valence
quarks. Since [Q,H ] 6= 0, this changes the energy of
the state operated on by mK − mπ. However, since Q
is an integral over all space, it does not change the 3-
momentum of the state on which it operates. Hence,
if it operates on a K at rest, it should produce a π at
rest also. The matrix element of interest is the overlap
of two wavefunctionals computed for valence quark mass
mq = ms and for mq = mu. By the Cauchy-Schwarz in-
equality, which holds for these wavefunctionals, the over-
lap is smaller than unity, achieving its maximum value
when ∆ = ms − mu = 0. Hence, repeating the same
arguments as above, we find that

F (q = 0) = 1−O(∆2) . (4.22)

V. MASS COMPARISONS INVOLVING

HEAVIER HADRONS

We proceed to discuss the systematics of mass differ-
ences m(Qs̄) − m(Qū) for various JPC mesons. Some
related work is in Refs. [33, 65]. In this context, we
recall that modern lattice estimates have yielded a some-
what smaller value of the current quark mass ms ∼ 120
MeV than some older current algebra estimates, which
tended to be centered around 180 MeV [49]. In the non-
relativistic quark model (with a flavor-independent non-
relativistic quark-(anti)quark interaction potential), the
mass difference between analogous hadrons differing only
by having an s quark replaced by a u or d quark should,



13

up to small binding changes due to the different reduced
constituent masses, differ by ms−mud. The real world is
more complicated, for several reasons. First, the concept
of quark masses and differences needs to be carefully de-
fined. The masses run with the distance or momentum
scale at which they are probed. The constituent quarks
can be considered to be extended quasiparticles, confined
to hadrons with sizes of order 1/ΛQCD. As the MIT-
SLAC deep inelastic scattering experiments showed dr-
matically, as one increases the momentum scale at which
one probes such a quark beyond ΛQCD, it acts quasi-
free, without the attendant strong coupling to gluons to
which it is subject for momenta less than ΛQCD. As this
momentum scale increases considerably beyond ΛQCD,
the quark mass then goes over to approximately the cur-
rent quark mass, since the QCD gauge coupling becomes
small. Since different hadrons have somewhat different
effective scales, this modifies the extracted mass differ-
ence.
Secondly, while at the fundamental Lagrangian level

the only breaking of flavor symmetry is due to the differ-
ences between the current quark masses, this is not the
case for the effective potential between the constituent
quarks in the naive quark model because of the short-
range color hyperfine interactions, though not in the
asymptotic, confining part of the potential. This sug-
gests that the mass differences of Qs̄ and Qq̄ mesons
with Q a heavy quark better estimate the current quark
mass difference ms −mq mass difference, with q = u or
d, since both the magnitude of the color hyperfine split-
tings and the effective sizes of the system are smaller
there (the latter is a reduced mass effect). Some mea-
sured mass differences, averaged over isospin multiplets,
are m(K∗) − m(ρ) ≃ 120 MeV, m(φ) − m(K∗) ≃ 125
MeV, m(Ds) −m(Du) ≃ m(D∗

s ) −m(D∗
u) ≃ 100 MeV,

and m(Bs) −m(Bu) ≃ 90 MeV. We observe a substan-
tial and fairly systematic tendency of these mass differ-
ence to decrease as m(Q) increases. This is in agreement
with the lattice gauge theory estimates mentioned above.
The pattern in the baryonic spectrum is more compli-
cated, but does not disagree with this general decreasing
behavior. As is well known, the large splittings in the
JP = 1/2+ baryon octet, viz., m(Λ)−m(N) ≃ 180 MeV,
m(Σ)−m(N) ≃ 255 MeV, m(Ξ)−m(Λ) ≃ 200 MeV, and
m(Ξ) − m(Σ) ≃ 125 MeV, can be explained by a color
hyperfine interaction, similar to that for the mesons. The

equal-spacing mass difference rule in the J = 3/2 baryon
decuplet with the interval of ∼ 146 MeV can also be
explained by the color hyperfine interaction. The rel-
atively large mass difference between (csu, 1/2+) ≡ Ξc

and (cud, 1/2+) ≡ Λc of m(Ξc) − m(Λc) ≃ 181 MeV is
again in agreement with the expectation based on the
large difference in the s − u and d − u color hyper-
fine interaction, which is evidently not reduced by the
presence of the nearby heavy c quark in these baryons.
Only the difference of masses of Ωc = (css, 1/2+) and
Ξc = (csu, 1/2+) of 230 MeV appears to be somewhat
high. On the basis of this discussion, one expects small
mass splittings m(QQ′s) − m(QQ′u) between baryons
containing two heavy quarks, but this expectation cannot
yet be checked.

VI. CONCLUSIONS

In conclusion, we have revisited the ρ–π puzzle,
namely, the problem of describing the π meson as a qiq̄j
bound state and as an approximate Nambu-Goldstone
boson and relating its mass and size to those of the ρ me-
son. We have presented a simple heuristic picture that,
we believe, gives insight into this problem. In this pic-
ture, the valence qi and q̄j quarks in the π are rather
tightly bound by the strong color hyperfine interaction
that splits the π and ρ masses. We show that this pic-
ture can resolve another old puzzle concerning the pion
wavefunction at the origin (van Royen-Weisskopf para-
dox) and is consistent with the Gell-Mann-Oakes-Renner
relation, With appropriate replacement of the u or d
quark by the s quark, our picture also applies to the K
and its relation to the K∗. Using our model, we present
an estimate for the charge radius 〈r2〉π+ . Our approach
gives further insight into the charged-current K+ – π+

transition relevant in Kℓ3 decays.
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