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This seminar talk gives a brief overview on the topic of quantum computing focusing on the
physical realisation using the states of trapped ions to process information in a novel way compared
to "classical" bit-based computers. While being one of the oldest among other platforms for quantum
computing, trapped-ions remain relevant and promising to this day.

I. HISTORY

The idea of quantum computing - to perform calcu-
lations using quantum mechanical (QM) systems more
efficiently than on a classical computer can be traced
back to the 1980s. In his conference talk (1981) Feynman
proposed, that some QM machines could drastically im-
prove the efficiency of simulating quantum mechanics due
to their natural compatibility with theory [1]. In 1985
Deutsch described the concept of the "universal quantum
computer" as an abstraction of a Turing machine [2]. In
1992 an algorithm showing the use of quantum paral-
lelism to exponentially outperform a classical computer
(known as Deutsch-Josza algorithm after its authors) was
published [3]. In 1995 a blueprint for quantum hardware
using a chain of trapped ions was published by Cirac and
Zoller [4]. The same year first experimental implementa-
tions of some fundamental operations according to this
blueprint were shown [5].

II. QUANTUM CIRCUITS AND ALGORITHMS

A common theoretical framework for constructing
quantum algorithms is qubit-based quantum circuit
model inspired by logic circuits in classical computing
[6]. A fundamental unit of information is a quantum
bit (qubit) - a QM two-state system allowing superposi-
tions. Several such qubits form a quantum register and
operations are described by the quantum gates - uni-
tary operators acting on the register. The algorithms
are constructed as a sequence of quantum gates form-
ing a quantum cicruit. Existing algorithms include e.g.
factoring with exponential speed-up [7], database search
with quadratic speed-up [8] as well as different simulation
and optimisation schemes [9].

III. TRAPPED-ION HARDWARE

Such quantum computer can be realised using any QM
system fulfilling the DiVincenzo criteria [10]. A possi-
ble realisation discussed herein utilises two (meta-)stable

atomic states of ions, stored in a chain inside a linear
Paul trap [4]. To avoid thermal population of the excited
states and achieve a decent spatial localisation, the ions
are cooled using laser-cooling techniques e.g. Doppler-
cooling and resolved sideband cooling. [11]

The computational cycle consists of initialisation in a
(simple) well-known state, control sequence performing
the quantum circuit and the read-out of the register, re-
sulting in one of possible bit-strings [12]. Control se-
quence generally consists out of many-qubit gates, which
can be constructed out of single-qubit gates and one suit-
able entangling two-qubit gate (universal set of gates) [6].

Control (gates) is realised using certain electromag-
netic pulses, typically in optical or radio-frequency range
[12]. A common way to entangle two ions is to utilise the
collective motional modes of the ion chain mediated via
Coulomb interaction e.g. Cirac-Zoller, Mølmer–Sørensen
gates [4], [11]. Initialisation is performed using optical
pumping and the read-out is realised via collecting state-
dependent fluorescence [11].

A scheme of an examplary trapped-ion hardware (11-
qubit IonQ quantum computer for research purposes [13])
can be seen in Fig. 1.

FIG. 1: An exemplary trapped-ion hardware scheme: The
ions are trapped in a linear surface trap, hyperfine splitting
of their ground state is used as qubits. The ions are addressed
by two Raman laser beams: a global beam shines on all ions
constantly and the second beam is split into individual beams
for each ion, those are controlled using a multi-channel AOM.
The fluorescence is collected using additional optics and de-
tectors. Source: [13]
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