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Historical context

Goal: solve problems using a quantum mechanical system more
efficiently than on a classical computer

e 1981 R. Feynman: Simulating physics with computers
"Nature isn’t classical, dammit, and if you want to make a simulation
of Nature, you’d better make it quantum mechanical ..."

e 1982 P. Benioff: Quantum mechanical Hamiltonian models of
Turing machines

e 1985 D. Deutsch: description of a universal quantum computer

e 1992 D. Deutsch, R. Josza: Deutsch-Josza algorithm
(deterministic on QC, exponential speed-up)

e 1994 P. Shor: factoring algorithm

e 1995 I. Cirac and P. Zoller: trapped-ion quantum computer
blueprint

e 1996 J. A. Jones and M. Mosca: first physical implementation of
a quantum algorithm (NMR, 2 gbits)
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e g(u)bit: QM 2-level system (2D complex Hilbert space H1)
general state:
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a0>+ﬁ1>=M apeC |af=+[p]" =1
e n-gbit register: H, = ’H%n
e quantum gate: unitary operator on the register Hilbert space
surjective: U |¥) € H
preserves inner product: UTU =1
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Example: Deutsch-Josza algorithm [2],[3]

Black box function f : {0,1}®" (or [0,2" —1]) — {0,1}
constant or balanced (half mapped to 0 and half mapped to 1)

Problem: determine whether f constant or balanced

classically: 2 to 21 4 1 queries

e quantum mechanically: 1 query (exponential speed-up!)
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1 1
e Hadamard gate: H= L [ ]

V2 11 -1
H|0) = \0)\-/%1)
H|1) = \O)JQM

e (n+1)-qubit gate Us : [x,y) — |x,y D(x))
x€[0,2" —1],y € {0,1}
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Example: Deutsch-Joszsa algorithm [2],[3]
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Other algorithms [1]

Shor’s algorithm: factoring (RSA) (exponential speed-up)

e Grover’s search: unstructured database search
(quadratic speedup)

Quantum simulations

Hybrid algorithms

e Error correction
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Different existing platforms
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What should hardware be capable of?

DiVincenzo criteria [4]

ot

. A scalable physical system with well characterized qubits

. The ability to initialize the state of the qubits to a simple fiducial

state, such as |00...0)

Long relevant decoherence times, much longer than the gate
operation time

A "universal" set of quantum gates

. A qubit-specific measurement capability



Physical qubits in ions
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Preparation, Control and Read-out

(a)

1)

State preparation

1)

Qubit control

Source: [5]
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State detection
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Trapping ions
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Coupling different states: typical realizations [5]

e Optical gates: resonant coupling with monochromatic laser
(e.g. electric quadrupole coupling)

e Microwave gates: use antennae to generate EM field

e Raman gates: stimulated Raman coupling using 2 lasers

Source: [5]
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Single-qubit gates: Rabi oscillation [1],[6]
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scillation [1],[6]
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P e
(¢) Rotation around y-axis (d) Rabi oscillation in Ca™ ion

on Bloch sphere

(1000 measurements per point)
Source: [6]
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Entangling gate: Cirac-Zoller gate [5],|7]

e Use Coulomb interaction to create entanglement

e Normal modes of longitudinal motion:

centre-of-mass (CM), breathing etc.

o @ i ? ‘ rocking
<@ @ breathing ? ? radial

e Preparation: cool the CM mode to the ground state
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1. Encode first qubit to CM motional state

=0)

Source:[5]

2. Add phase to the second qubit conditioned on motional state

n=0)

[1)¢

n=0)

0).

Overall: [11) + — [11); |00}, 01),

10) unaltered
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Example: TonQ 11 qubit QC [8]

Qubits: |0) = |F = 0) and [1) = |F = 1) of 2S; /5 in "1Yb*

Linear surface RF-trap

e Raman (2-photon) coupling

Entangling mediated via transverse motion

Source: [8], IonQ website
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Technical progress |5

Fully connected register size up to 20 qubits (2018)

Coherence time: up to several minutes

Single-qubit gate time: ~ 1 ps
Single-qubit gate fidelity: ~ 0.999 ... 0.999999

Two-qubit gate time: ~ 10 pus
Two-qubit gate fidelity: ~ 0.98 ... 0.998
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Recap:

Recipe for quantum suprem:

Find a hard problem for a classical computer and
a quantum algorithm giving you a relevant speed-up

Construct a quantum system with well-characterized qubit states
(trap and cool ions, choose qubit states)

Implement control: initialization, 1-qubit gates, 2-qubit entangling gate
(laser or microwave pulses)

. Implement a quantum mechanical observer /measurement

(state-dependent fluorescence)

. Optimize and hope for the best
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