Physics at the LHC

Pavel Starovoitov

Kirchhoff-Institut für Physik, Heidelberg

November 8, 2021

< 同 ト < 三 ト < 三 ト

Event: 531676916 2015-08-22 04:20:10 CEST

Ш

◄

Outlook

- Large Hadron Collider
 - proton-proton collisions, pileup, event size, bandwidth and triggering.
- ATLAS detector
 - Calorimeters : electromagnetic and hadronic
- Jet definition, reconstruction and calibration
 - jet algorithms, infra-red stability, pileup mitigation, topo-clusters, jet energy calibration
- Jet cross-section measurements at 13 TeV
 - trigger strategy, event selection, detector effects, theory model, quantitative data to theory comparison
- Searches for a low-mass dijet resonance at 13 TeV
 - trigger strategy, data analysis, fit model, interpretation

A THE A THE

ATLAS Calorimeters

Pavel Starovoitov (KIP HD)

LAr Calorimeter

イロト イヨト イヨト イヨト

Tile Calorimeter

Pavel Starovoitov (KIP HD)

Physics at the LHC

э

イロト イヨト イヨト イヨト

Jet life

Final JES precision

Final JES precision

Name	Description	Category
Z+jet		
e E-scale material	Material uncertainty in electron energy scale	det.
e E-scale presampler	Presampler uncertainty in electron energy scale	det.
e E-scale baseline	Baseline uncertainty in electron energy scale	mixed
e E-scale smearing	Uncertainty in electron energy smearing	mixed
μ E-scale baseline	Baseline uncertainty in muon energy scale	det.
μ E-scale smearing ID	Uncertainty in muon ID momentum smearing	det.
μ E-scale smearing MS	Uncertainty in muon MS momentum smearing	det.
MC generator	Difference between MC generators	model
JVF	JVF choice	mixed
$\Delta \phi$	Extrapolation in $\Delta \phi$	model
Out-of-cone	Contribution of particles outside the jet cone	model
Subleading jet veto	Variation in subleading jet veto	model
Statistical components	Statistical uncertainty	stat./meth.
γ +jet		
γ E-scale material	Material uncertainty in photon energy scale	det.
γ E-scale presampler	Presampler uncertainty in photon energy scale	det.
γ E-scale baseline	Baseline uncertainty in photon energy scale	det.
γ E-scale smearing	Uncertainty in photon energy smearing	det.
MC generator	Difference between MC generators	model
$\Delta \phi$	Extrapolation in $\Delta \phi$	model
Out-of-cone	Contribution of particles outside the jet cone	model
Subleading jet veto	Variation in subleading jet veto	model
Photon purity	Purity of sample in γ +jets	det.
Statistical components	Statistical uncertainty	stat./meth.
Multijet balance		
α selection	Angle between leading jet and recoil system	model
β selection	Angle between leading et and closest subleading jet	model
MC generator	Difference between MC generators (fragmentation)	mixed
$p_{\rm T}$ asymmetry selection	Asymmetry selection between leading and subleading jet	model
Jet p_T threshold	Jet $p_{\rm T}$ threshold	mixed
Statistical components	Statistical uncertainty	stat./meth.

Pavel Starovoitov (KIP HD)

Proton-proton collisions : final state truth at the particle-level

э

Proton-proton collisions : final state truth at the fixed order

$$\begin{split} \sigma\left(h_{1}h_{2}\rightarrow \mathbf{Z}\mathbf{H}+X\right) &= \sum_{n=0}^{\infty} \alpha_{s}^{n}\left(\mu_{R}^{2}\right) \sum_{i,j} \int dx_{1}dx_{2} f_{i/h_{1}}\left(x_{1},\mu_{F}^{2}\right) f_{j/h_{2}}\left(x_{2},\mu_{F}^{2}\right) \\ &\times \hat{\sigma}_{ij\rightarrow \mathbf{Z}\mathbf{H}+X}^{(n)}\left(x_{1}x_{2}s,\mu_{R}^{2},\mu_{F}^{2}\right) + \mathcal{O}\left(\frac{A^{2}}{M_{W}^{4}}\right), \end{split}$$

э

Proton-proton collisions : final state (visible by an ideal detector)

(actual final-state multiplicity ~ several hundred hadrons)

Pavel Starovoitov	(KIP HD)
-------------------	----------

Physics at the LHC

• LHC•

э

イロト イヨト イヨト イヨト

More realistic picture of proton-proton collisions

A (B) < A (B) < A (B)</p>

Even more realistic picture of proton-proton collisions

< 同 ト < 三 ト < 三 ト

Very realistic picture of proton-proton collisions

Pavel Starovoitov (KIP HD)

Physics at the LHC

University Heidelberg 17/61

Total cross section

 $\sigma_{\text{total}} = \sigma_{\text{elastic}} + \sigma_{\text{single-diffractive}} + \sigma_{\text{double-diffractive}} + \dots + \sigma_{\text{non-diffractive}}$

- Experimentally minimum bias ≈ all events with no bias from trigger conditions
- Theoretically $\sigma_{\min-bias} \approx \sigma_{double-diffractive} + \sigma_{non-diffractive}$

Hard scattering + Underlying event

The underlying is the additional activity from soft interactions in additional to the primary hard partonic process.

Underlying event

 If the interactions occur independently obeys Poissonian statistics

$$P_n = rac{\langle n
angle^n}{n!} e^{-\langle n
angle}$$

 However energy-momentum conservation tends to suppressed large numbers of parton scatterings.

Underlying event (color correlation)

Pavel Starovoitov (KIP HD)

Physics at the LHC

University Heidelberg 21/61

Multiple interactions : measurement

$$\begin{split} \mathrm{d}\hat{\sigma}_{Y+Z}^{(\mathrm{DPI})}(s) = & \frac{m}{2\sigma_{\mathrm{eff}}(s)} \int \mathrm{d}x_{i_1} \, \mathrm{d}x_{i_2} \, \mathrm{d}x_{j_2} \, [f_{i_1j_1}(x_{i_1}, x_{j_1}, \mu_F) \\ & f_{i_2j_2}(x_{i_2}, x_{j_2}, \mu_F) \, \mathrm{d}\hat{\sigma}_{i_1i_2 \to Y}(x_{i_1}, x_{i_2}, s) \, \mathrm{d}\hat{\sigma}_{j_1j_2 \to Z}(x_{j_1}, x_{j_2}, s)], \\ & q \\ & q \\ & \psi \\ & \psi \\ & q \\ & \psi \\ & \psi \\ & q \\ & \psi \\ & \psi \\ & q \\ & \psi \\ & \psi \\ & q \\ & \psi \\ & \psi \\ & q \\ & \psi \\ & \psi \\ & q \\ & \psi \\ &$$

2

Multiple interactions : measurement

Standard Model total cross sections

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

(4) (5) (4) (5)

< 17 ▶

Jet cross section measurement

Pavel Starovoitov (KIP HD)

Physics at the LHC

University Heidelberg 31/61

Instrumental effects : problematic modules

Pavel Starovoitov (KIP HD)

Physics at the LH0

Pavel Starovoitov (KIP HD)

Physics at the LHC

University Heidelberg 34/61

Physics at the LH

Pavel Starovoitov (KIP HD)

Luminosity

Triggering Inclusive jets

Levels of jet definition

shower development

э

・ロト ・ 四ト ・ ヨト ・ ヨト

Unfolding

Jet (definitions) provide central link between expt., "theory" and theory And jets are an input to almost all analyses

Pavel Starovoitov (KIP HD)

э

イロト 不得 トイヨト イヨト

Unfolding

Jet (definitions) provide central link between expt., "theory" and theory And jets are an input to almost all analyses

э

Unfolding matrix

Unfolding efficiencies

Unfolding bias

Systematic uncertainties propagation

Inclusive jets

Pavel Starovoitov (KIP HD)

Dijets

Pavel Starovoitov (KIP HD)

University Heidelberg 47/61

Non-perturbative

Pavel Starovoitov (KIP HD)

Electroweak

Cross section total uncertainty (fixed order theory)

Cross section total uncertainty (fixed order theory)

Cross section total uncertainty (exp)

Inclusive jets: NLO PDF1

Inclusive jets: NLO PDF2

Inclusive jets: NLO vs NNLO ptjet

Inclusive jets: NLO vs NNLO ptmax

- 一司

Inclusive jets: full NLO Monte Carlo sim

Correlation statistics

Pavel Starovoitov (KIP HD)

э

Correlation total

Pavel Starovoitov (KIP HD)

Quantitative comparison data to theory

			$P_{\rm obs}$		
Rapidity ranges	CT14	MMHT 2014	NNPDF 3.0	HERAPDF 2.0	ABMP16
$p_{\mathrm{T}}^{\mathrm{max}}$					
y < 0.5	67%	65%	62%	31%	50%
$0.5 \le y < 1.0$	5.8%	6.3%	6.0%	3.0%	2.0%
$1.0 \le y < 1.5$	65%	61%	67%	50%	55%
$1.5 \le y < 2.0$	0.7%	0.8%	0.8%	0.1%	0.4%
$2.0 \le y < 2.5$	2.3%	2.3%	2.8%	0.7%	1.5%
$2.5 \le y < 3.0$	62%	71%	69%	25%	55%
$p_{\mathrm{T}}^{\mathrm{jet}}$					
y < 0.5	69%	67%	66%	30%	46%
$0.5 \le y < 1.0$	7.4%	8.9%	8.6%	3.4%	2.0%
$1.0 \le y < 1.5$	69%	62%	68%	45%	54%
$1.5 \le y < 2.0$	1.3%	1.6%	1.4%	0.1%	0.5%
$2.0 \le y < 2.5$	8.7%	6.6%	7.4%	1.0%	3.6%
$2.5 \le y < 3.0$	65%	72%	72%	28%	59%

æ

Quantitative comparison data to theory

			$P_{\rm obs}$		
y^* ranges	CT14	MMHT 2014	NNPDF 3.0	HERAPDF 2.0	ABMP16
$y^* < 0.5$	79%	59%	50%	71%	71%
$0.5 \le y^* < 1.0$	27%	23%	19%	32%	31%
$1.0 \leq y^* < 1.5$	66%	55%	48%	66%	69%
$1.5 \leq y^* < 2.0$	26%	26%	28%	9.9%	25%
$2.0 \leq y^* < 2.5$	41%	34%	29%	3.6%	20%
$2.5 \leq y^* < 3.0$	45%	46%	40%	25%	38%
all y^* bins	9.4%	6.5%	11%	0.1%	5.1%

2