5.3 Neutrino oscillation experiments

Neutrino sources

Studied neutrino sources can be well described by a "2-neutrino mixing model": $\mathcal{P}(v_{e} \to v_{x}) = \sin^{2}(2\theta)\sin^{2}\left(\frac{\Delta m^{2}}{4E}L\right)$ e. g. For solar neutrinos:

Solar neutrinos:

Reaction for neutrino detection on earth:

Cl ₂ detectors	v_e + ³⁷ Cl \rightarrow ³⁷ Ar + e, ³⁷ Ar \rightarrow ³⁷ Cl (EC)	E _v >0.8 MeV
Ga detectors	v_e + ⁷¹ Ga \rightarrow ⁷¹ Ge + e	E _v >0.2 MeV
H ₂ O detectors	Elastic scattering: $v_e + e \rightarrow v_e + e$	$E_v > 5 \text{ MeV}$ (detection)
		116

Radio-chemical experiments – the pioneer:

- Homestake mine, 1400 m underground
- 615 t of C_2CI_4 (perchloroethilene) = 2.2x10³⁰ atoms of ³⁷Cl
- Use ³⁶Ar and ³⁸Ar to carry-out the few atoms of ³⁷Ar (~ 1 atom/day)
- Count radioactive ³⁷Ar decays

Homestake

$$\nu_{\rm e}$$
 + ^{37}Cl \rightarrow ^{37}Ar + e, ^{37}Ar \rightarrow ^{37}Cl (EC)

<u>Neutrino detection with water detectors</u> $[E_v \sim O(GeV)]$

Detection of Cherenkov photons: Photo multiplier

(Super)-Kamiokande

Super-Kamiokande

- Largest artificial water detector (50 kt)
- 11000 PMTs (50 cm tubes!): 40% of surface covered with photo-cathode

 $v_{\mu} \rightarrow \mu$ stopped

Cherenkov cone: $\cos\theta = \frac{1}{\beta n}$ $\Leftrightarrow \theta = 42^{\circ} \ (\beta = 1)$

Experiment can distinguish electron and muon events, can measure energy

Solar Neutrino Problem

Total Rates: Standard Model vs. Experiment Bahcall-Pinsonneault 2000

Depending on the neutrino energy between 70% and 35% of the expected neutrino flux from the sun is seen. Solution: $v_e \rightarrow v_{\mu,.}v_{\tau}$

Sudbury Neutrino Observatory

Try to measure the "oscillated" neutrinos of different flavors

- 6 m radius transparent acrylic vessel
- 1000 t of heavy water (D₂O)
- 9456 inward looking photo multipliers
- Add 2 t of NaCl to detect neutrons

Solar Neutrino (8B) detection with SNO

SNO Evidence for Neutrino Oscillation

Reminder: the neutrino leaves the sun in a fixed mass state.

Fits to data:

$$\sin^2 \theta_{12} \approx 0.33$$

$$\Delta m_{21}^2 \equiv \Delta m_{sol}^2 \approx 7 \times 10^{-5} \,\mathrm{eV}^2$$

Only works with "resonance" matter effect in sun:

$$\cos 2\theta_{12} - x > 0$$

$$\cos 2\theta_{12} - \frac{A}{\Delta m_{sol}^2} > 0 \implies \Delta m_{sol}^2 \cos 2\theta_{12} > A > 0$$

Choosing $\cos 2\theta_{12} > 0$ fixes $\Delta m_{sol}^2 = m_2^2 - m_1^2 > 0$

$$\Delta m_{21}^2 = m_2^2 - m_1^2 > 0$$

i.e. matter effect inside sun fixes $m_2 > m_1$

Atmospheric neutrinos (produce by cosmic rays in the atmosphere)

Muon neutrino : electron neutrino = 2 :1

Super-Kamiokande:

Figure 14.4: The zenith angle distributions of Super-Kamiokande atmospheric neutrino events. Fully contained 1-ring e-like and μ -like events with visible energy < 1.33 GeV (sub-GeV) and > 1.33 GeV (multi-GeV), as well as upward stopping and upward stopping μ samples are shown. Partially contained (PC) events are combined with multi-GeV μ -like events. The blue histograms show the non-oscillated Monte Carlo events, and the red histograms show the best-fit expectations for ν_{μ} - ν_{τ} oscillations. (This figure is provided by the Super-Kamiokande Collaboration) **PDG 2020**

<u>Reactor anti-neutrinos</u> (from neutron β -decays):

Name	Reactor power $(\mathrm{GW}_{\mathrm{th}})$	Baseline (km)	Detector mass (t)	Year
KamLAND	various	180 (ave.)	1,000	2001 -
Double Chooz	4.25×2	1.05	8.3	2011 - 2018
Daya Bay	$2.9{ imes}6$	1.65	20×4	2011 -
RENO	$2.8{ imes}6$	1.38	16	2011 -
JUNO	26.6 (total)	53	20,000	

 $v_e \rightarrow v_e$ at distances of L₀=180km very well described by the 2 neutrinos model

Figure 14.7: Ratio of the observed $\bar{\nu}_e$ spectrum to the expectation for no-oscillation versus L_0/E for the KamLAND data. $L_0 = 180$ km is the flux-weighted average reactor baseline. The 3- ν histogram is the best-fit survival probability curve from the three-flavour unbinned maximum-likelihood analysis using only the KamLAND data. This figure is taken from [150]. **PDG 2020**

KamLAND confirms solar neutrinos results: large mixing angle and $\Delta m^2 \approx 7 \times 10^{-5} \text{ eV}^2$

T. Schwetz-Mangold

<u>Measurement of θ_{13} </u>

To observe CP violation in neutrino mixing a finite value of $sin^2\theta_{13}$ is necessary.

$\underline{\theta}_{13}$ with reactor neutrinos:

Survival probability for 3-neutrino mixing:

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_v}\right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E_v}\right)$$

0.2L

1

10

L, km

100

(China)

All experiments have a "near" detector to monitor the neutrino flux and a "far" (typ. Distance 1.5 km) to measure the deficit.

(South Korea)

The 3 reactor neutrino experiments published first results in 2012: Double Chooz reported an indication of electron antineutrino disappearance with the ratio of observed to expected events of R= $0.944\pm0.016\pm0.04$ ruling out the no-oscillation hypothesis at 94.6% CL. Daya Bay observed of R= $0.940\pm0.011\pm0.004$ corresponding to 5.2σ of a non-zero value of θ_{13} . RENO reported R= $0.920\pm0.000\pm0.014$ indicating a non-zero value of θ_{13} with a significance of 4.9σ .

Summary: Neutrino Mixing

Summary: Neutrino masses

