
4. Neutrino masses and Majorana Neutrinos
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From neutrino oscillation experiments we know that neutrinos are massive 
fermions. Cosmological observations yield an upper bound on the sum of 
masses: 
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Do neutrinos obtain their mass through the Higgs-mechanism? If yes, why 
are the Yukawa couplings (masses) so much smaller than for all other SM 
fermion?

Closer look to the possible mass terms that respect Lorentz and gauge 
invariance.  For charged fermions in the SM the only possible mass term is 
the so-called Dirac mass: 

 L R R Lm m        L with 0†  

For neutral particles (they could be  their own anti-particles) other Lorentz-
invariant  combinations are also possible as mass terms :           and   

Mass terms mix LH 
and RH chiral states

𝜓ത௖𝜓 𝜓ത𝜓௖

(with      is the C-conjugated state)  𝜓௖
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Charge-conjugation operator C (particle-anti-particle transformation):

To derive the charge-conjugation operator C one examines the Dirac Eqs. of 
an electron and of its anti-particle (positron) in an electric field: 

  0i eA m
       

  0Ci eA m
       

Electron

Positron

From these Eqs one finds (see text books) for       and the C-operator: 𝜓௖

2 2 0
c T Ti i C        

The C-operator flips all charge-like quantum-numbers. One finds:
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And further:        5 51 1
2 2, ,

C
C C C

L R R L

 
   

 
   
 



C-operator flips the chirality!
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0†  
with

C is real, anti‐
symmetric and 

unitary 

(see e.g. K. Zuber, Neutrino Physics)
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4.1 Dirac mass terms

Dirac masses for neutrinos can be created in the SM by extending the particle 
content and by adding  a RH neutrino singlet R:

   L
,

. .Neutrino ij i j
Y ukawa L R

i j
Y L H h c

Resulting in a Dirac mass term          after symmetry breaking:𝑚𝜈𝜈

   L
,

. .D i ij j
Mass L D R

i j
M h c

i, j are the flavor indices: e, , 
MD is 3x3 complex matrix,                    
in general non-diagonal. 

Mass terms are invariant under a global phase transformation:
 From invariance follows the conservation of lepton-number.

, ,
i i i
L R L Re  
i i ie   

The diagonalization of the mass term follows the procedure we applied for quarks:
†

D L RM U mV
with  two unitary matrices to transform the LH and RH chiral components  
independently: 3 3

1 1

  and  i i i i
L L L R R R

i i

U V   
 

      , ,e  

R is a singlet under all SM 
gauge transformations: 
no interaction = sterile 
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Expressed in the mass eigenstates i the mass term takes the form:

 
3 3

1 1

   
 

     L . .D i i i i
Mass i L R i

i i

m h c m

• 1,2,3 are the neutrino mass eigenstates  with masses m1,2,3
• The LH flavor states e,, which enter into the standard charged and neutral 

currents are linear combinations of the mass states. 
• The unitary matrix U is called PMNS matrix (see above) – V does not enter
• The Lagrangian is invariant under global phase transformation:                      

lepton number conservation.

The smallness of the neutrinos masses are a result of very tiny Yukawa 
couplings 

 1210
2

~ij ij ijM Y Y O  

It is not clear why compared to the quark sector the differences between the 
 masses and the charged leptons masses are so large.

The RH neutrino singlet have weak hypercharge Y=0 and weak isospin I=0-
They do not interact with anything: sterile neutrinos.
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In the “original” formulation of the Standard Model, neutrinos masses are zero 
because of the missing RH -singlets. The observation of non-vanishing 
neutrino masses indicates thus physics beyond the Standard Model.

Remark: Nowadays massive neutrinos are often treated as “part of the SM” 
assuming the existence of  RH neutrinos: the additional new particle is not 
modifying the gauge structure for the theory.

The very small neutrino masses as well as the existence of a sterile particle is 
not motivated. 

Massive Dirac neutrinos  and their anti-particles C are described by four 
independent chiral components: 

, , ,C C
L R L R   
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4.2 Majorana mass terms

As indicated above, mass terms with          and           also satisfy Lorentz 
invariance. Moreover             is a RH chiral state – thus no need to 
introduce an additional RH neutrino component. Using LH particle and the 
anti-particle spinor (RH), the mass term would have the following form:   

𝜓ത௖𝜓 𝜓ത𝜓௖

 CL

  1
2

  L
,

. .
CM i ij j

Mass L M L
i j

M h c i, j are the flavor indices: e, , 

With the matrix MM (3x3 complex matrix, in general non-diagonal) the mass 
term can be rewritten in the following matrix form:

 1
2
   ML . .

CM
Mass L M L h c with

eL

L L

L






 



 
 

  
 
 

We can diagonalize the matrix MM with an unitary transformation U:

1
2
  mLM M M

Mass  
1

2

3

† † CM
L LU U


   



 
     
 
 

with

 1 3 3, ,diag m m mm

(*)
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i is the field of the neutrino with mass mi. From Eq. (*) follows: 

 CM M 

Thus the fields of the neutrinos with definite mass satisfy the Majorana condition: 
C
i i 

For neutrino field satisfying the Majorana condition:  neutrino = antineutrino 

The field M is the sum of a LH and RH component: 

M M M
L R   

Comparing with                                        one finds  𝜈ெ ൌ 𝑈ற𝜈௅ ൅ 𝑈ற𝜈௅
஼

 † †  and  
CM M

L L R LU U    

i.e. the LH and RH component of the Majorana field are connected by

 CM M
R L  and consequently  , ,

C

i R i L 

Which means also the fields 
1,2,3 satisfy the condition  , ,

C

i i L i L   
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It should be stressed that in case of the introduced Majorana mass term only active 
left-handed neutrino fields I,L (RH anti-neutrinos) enter the total Lagrangian:       
weak interaction cannot distinguish if neutrinos are Dirac or Majorana fermions.

Mass terms  

While for Dirac fermion LH and RH components are independent, for 
Majorana fermions they are connected: 𝜈௜,ோ ൌ 𝜈௜,௅

஼

𝑚௜𝜈௜,௅ 𝜈௜,௅
஼

therefore violates lepton number conservation.

, ,
i

i L i Le  

Under a global phase transformation the two components transform as:

   , ,

C Ci
i L i Le   and

Mass terms                        cannot be generated in a gauge invariant way 
within the SM: 

𝑚௜𝜈௜,௅ 𝜈௜,௅
஼

L
1

3 2I  
1Y  

 CL L  3 1I  
2Y  

To generate such a mass term via a Higgs-coupling a Higgs triplet with I=1, 
Y=2 is necessary  does not exist in SM. 

Neutrino mass term (Dirac or Majorana) requires physics beyond SM:
R or Higgs-triplet or new mass generation.
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4.3: Dirac and Majorana mass terms and seesaw model

For simplicity we discuss here only the case of one neutrino generation. For 3 
generations a diagonalization of the mass matrices is required – only a 
technical complication.

The most general Lorentz invariant mass term has a Dirac and Majorana
contributions for LH and RH neutrinos:

   1 1
2 2

. .C CD M
L L L D L R R R Rm m m h c          L

mL and mR are LH and RH Majorana masses, mD is the Dirac  mass.

Introducing the neutrino vector nL the mass term can be written in matrix form:

 1
2

. .CD M D M
L Ln n h c   ML with

 
L
CL

R

n




 
   
 

L DD M

D R

m m
m m

  
  
 

Mand

   C C
C RL

L
RR

n



   
        
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L DD M

D R

m m
m m

  
  
 

M

Mass matrix couples the chiral states in the following way: 

L  CL

 CR R

Dm

Lm

Rm

The chiral fields  L  and (R)C = C
L are not the mass eigenstates  - these are 

found by diagonalizing the matrix MD+M using the orthogonal matrix O:

cos sin
sin cos

 
 

 
   

O D M T M OMO 1 2( , )diag m m  M

with
2tan D

R L

m
m m

 


and    2 2
1 2

1 1 4
2 2, R L R L Dm m m m m m    

As m1,2 can be positive and negative one rewrites m1,2

1 0 with  and i i i i im m m     
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Taking this into account one can express the diagonalization of MD+M as
D M T TU U  M O MO M

with 1 2( , )diag m mM and unitary matrixU O 

()

For the neutrino mass eigenstates one finds from ():

  1

2

† † CM
L LU n U n





 

    
 

( )

and thus
2

1

1 1
2 2

D M M M
i i i

i

m   



    ML

Evidently (i)C = i  mass eigenstates are Majorana neutrinos.

Using ( ) one obtains the following mixing equation:

1 1 2 2, ,cos sinL L L     

  1 1 2 2, ,sin cosC
R L L      

The parameter I determines the CP parity  of the Majorana neutrino i.

Definition of the Majorana
neutrino (see p. 59) 

𝜈ெ ൌ 𝑈ற𝜈௅ ൅ 𝑈ற𝜈௅
஼
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Seesaw model: (simples case for one neutrino family)

The seesaw mechanism was proposed at the end of the 1970s and is based 
on the Dirac and Majorana mass terms. It is a natural and viable way to 
generate neutrino masses.

The three parameters mL, mR, and mD characterize the LH and RH Majorana
mass terms and the Dirac mass term. The mass eigenstates  characterized 
by m1 and m2 are Majorana states (see above).

Assumptions:
1. There is no LH Majorana mass term
2. Dirac mass term generated by a SM higgs-coupling  mD is of the order 

of a lepton or quark mass.
3. RH Majorana mass term  0 for neutrino NR, breaks lepton number 

conservation: we assume that this happens at a mass scale MR much 
larger than the electroweak scale:

,R R W Z Dm M M M m  

One obtains for the mass eigenvalues (see above):
2 2

1
D D

D
R R

m mm m
m M

   2 R Dm M m     2 2
1 2

1 1 4
2 2, R L R L Dm m m m m m    

See p. 62
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With the mixing angle                          and w/                 and                 :    1D

R

m
M

   1 1   2 1  

mixing relations: 1 2, ,
D

L L L
R

mi
M

   

  1 2, ,
C D

R L L
R

mN i
M

   

For the physical states one obtains (up to phases): 

1 L 

2 RN 

Estimation of scale MR : 

LH  neutrino w/ low mass  active

RH  neutrino w/ high mass  sterile

170GeVD tm m 

2 2
1 5 10

heaviest
Neutrino

eVm m    

2
15

1

10 GeVD
R

mM
m

 
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Thus, the seesaw mechanism explains why the neutrinos which we observe 
are so light. The energy scale MR is far beyond the energies colliders can 
reach.
The Majorana mass term can be generated through BSM extensions of the 
Standard Model: 
Interaction of “lepton-Higgs pairs” with a heavy Majorana singlet fermion NR . 
Due to the “decoupling” of the heavy neutrino the virtual exchange of NR leads 
to an effective dimension five operator (gauge invariant) with only SM fields:

   ~ . .T C
eff L L

NP

c L L h c  


L  

L
L

L

L
 

  
 

2 2 0


   



 
   

 


After symmetry breaking 
2

2
~ . .C

eff L L
NP

c v h c  


L

2 22

2 2NP

y vc v m
M


 


In the limit M, where NR
decouples, neutrinos are 
effectively massless.

(only dim-5 operator which breaks
lepton number at tree-level)
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If seesaw is realized in nature:

• Neutrinos are Majorana particles
• Neutrino masses are much smaller than lepton and quark masses
• Sterile heavy Majorana particle - seesaw partner – must exist. 

Question:
If neutrinos are Majorana particles              why does the reaction 𝜈 ൌ 𝜈

n e p   

not exist?    only the LH component of             can interact in the weak 
charged current reaction: strong helicity suppression (see below).   

𝜈 ൌ 𝜈

We notice that a theory where New Physics is composed of heavy sterile neutrinos, 
provides an specific example of a theory which at low energy contains three light 
mass eigenstates with an effective dim-5 interaction with ΛNP=M. In this case the 
New Physics scale is the characteristic mass scale of the heavy sterile neutrinos



68

Neutrino mixing for Majorana neutrinos:

While for Dirac neutrinos the PMNS mixing matrix is given by three mixing 
angles and one phase .

13 13 12 12

23 23 12 12

23 23 13 13

1 0 0 0 0
0 0 1 0 0
0 0 0 1

CP

CP

i

i

c s e c s
U c s s c

s c s e c





    
         

         
For Majorana neutrinos there are two additional Majorana phases which 
can not be absorbed in the redefinition of the neutrinos states:

1

2

13 13 12 12

23 23 12 12

23 23 13 13

1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 1

CP

CP

i i

i

i

c s e c s e
U c s s c e

s c s e c

 





      
             

           

The weak eigenstates  which by default are the states produced in the weak 
CC interaction of a charged lepton l (flavor eigenstates) are the linear com-
binations of the mass eigenstates i determined by the PMNS mixing matrix U:

3

1
i i

i

U  



 

(different conventions, here PDG convention)


