Optical Frequency Combs	Mode locking-cavity	Measuring with OFC	Applications of FC	Conclusions	

Optical Frequency Combs

Paula Barber Belda

Heidelberg Universität MSc Seminar Your passion for Physics: what are you curious about?

December 1st, 2020

Optical Frequency Combs	Mode locking-cavity	Measuring with OFC	Applications of FC	Conclusions	

Contents

- 1 Introduction
- **2** Optical Frequency Combs
- 3 Mode locking-cavity
- 4 Measuring with OFC
- **5** Applications of FC

6 Conclusions

Contents

1 Introduction

- 2 Optical Frequency Combs
- 3 Mode locking-cavity
- 4 Measuring with OFC
- **(5)** Applications of FC

6 Conclusions

Introduction	Optical Frequency Combs	Mode locking-cavity	Measuring with OFC	Applications of FC	Conclusions	
0000						

Introduction

Passion for precision

• With better measuring tools, one can look where no one has looked before.

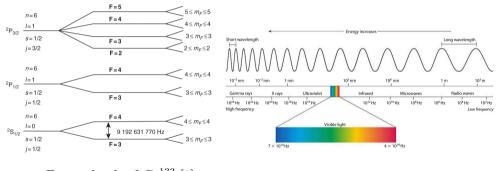
In this talk...

- Definition of Optical Frequency Combs (OFC).
- Description of a Mode-locking technique to create them.
- Determining the parameters of the OFC.
- Applications of Frequency Combs.

Measuring time I

What makes a good clock?

• Goal: increase the number of oscillations per unit time (ticks per second).



IS definition of the second

One second in the IS is measured as the time taken by 9,192,631,770 cycles of radiation from electrons moving between the ground-state hyperfine transition energy levels of the caesium-133 atom.

Introduction	Optical Frequency Combs	Mode locking-cavity	Measuring with OFC	Applications of FC	Conclusions	References
0000						

Measuring time II

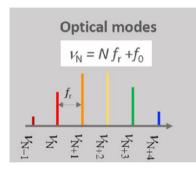
Energy levels of Cs^{133} [1]

Contents

1 Introduction

2 Optical Frequency Combs

3 Mode locking-cavity


4 Measuring with OFC

(5) Applications of FC

6 Conclusions

Optical Frequency Combs

Adapted from [2]

 $OFC = coherent addition of <math>10^5 - 10^6$ optical cavity modes, spanning up to 100 nm in the optical domain.

T.W. Hänsch and J.L.Hall

Photo: Sears.P.Studio John L. Hall Prize share: 1/4

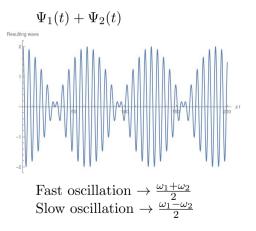
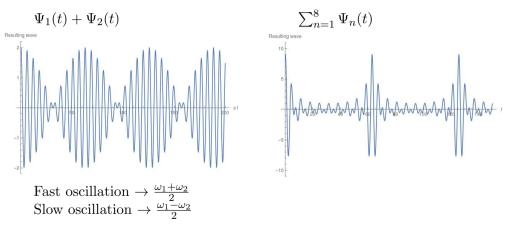
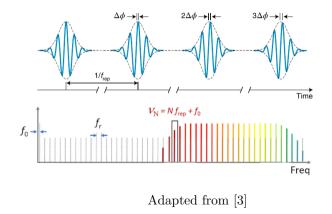


Photo: F.M. Schmidt Theodor W. Hänsch Prize share: 1/4

"For their contributions to the development of laser-based precision spectroscopy, including the optical frequency comb technique."

Addition of modes

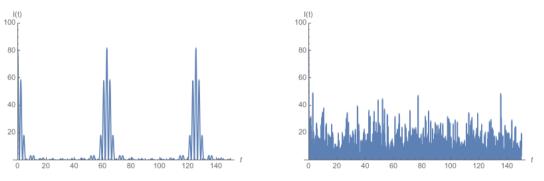

Monochromatic wave (in time space): $\Psi_n(t) = A_n \cos(\omega nt + \phi)$



Addition of modes

Monochromatic wave (in time space): $\Psi_n(t) = A_n \cos(\omega nt + \phi)$

Optical Frequency Combs in the time domain



- Δφ = phase shift of the carrier of the wave relative to the envelope of the pulses
- Induces the translation $f_0 = \frac{\Delta \phi}{2\pi}$ of all the lines in the spectrum from nf_r

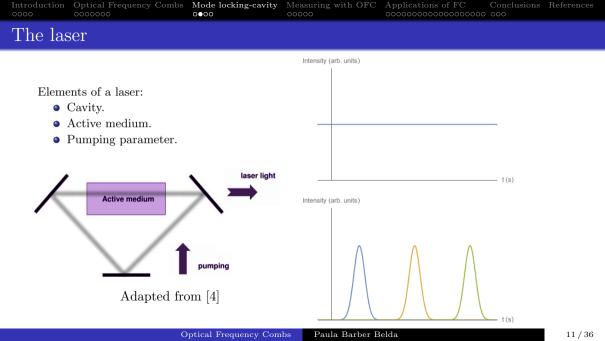
Importance of the phase

 $\Psi_n(t) = A_n \cos(\omega n t + \phi)$

Interference of N = 8 modes in phase (a) and with random relative phases (b)

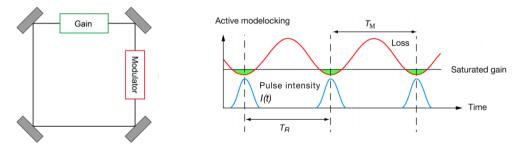
Contents

1 Introduction


2 Optical Frequency Combs

3 Mode locking-cavity

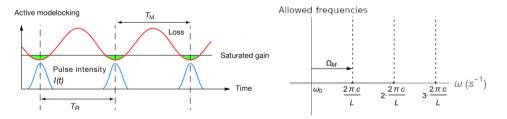
Measuring with OFC


(5) Applications of FC

6 Conclusions

Active mode locking

- A modulator is introduced in the cavity $T(t) = e^{M(t)}$.
- $M(t) = M(\cos(\Omega_M t) 1),$
 - $\Omega_M \to \text{frequency of the modulator } (s^{-1}),$
 - $M \rightarrow$ amplitude of the modulator.



Cavity and evolution of the pulse when introducing the modulator. Adapted from [5]

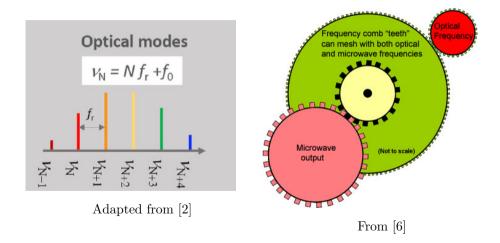
Creation of "locked" modes

• Suppose initial monochromatic light $E^{in}(t) \propto e^{-i\omega_0 t}$

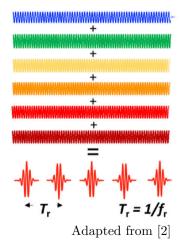
$$E^{out}(t) = T(t)E^{in}(t) \propto e^{M(t)}e^{-i\omega_0 t}$$

= $e^{M(\cos(\Omega_M t)-1)}e^{-i\omega_0 t}$
 $\approx (1+M(\cos(\Omega_M t)-1))e^{-i\omega_0 t}$
= $(1-M)e^{-i\omega_0 t} + \frac{M}{2}e^{-i(\omega_0+\Omega_M)t} + \frac{M}{2}e^{-i(\omega_0-\Omega_M)t}$. The period of the modulator must have
 $T_M = \frac{2\pi}{\Omega_M} = \frac{2\pi}{\Omega_M}$

Contents


1 Introduction

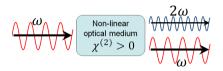
- 2 Optical Frequency Combs
- **3** Mode locking-cavity
- 4 Measuring with OFC
- **5** Applications of FC



Optical Clocks

Determining f_r

Longitudinal cavity modes



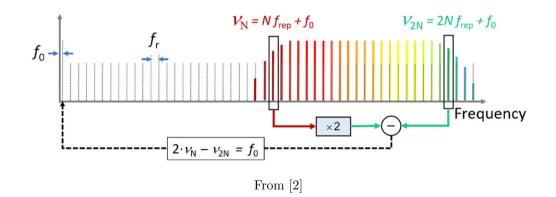
Typical cavity lengths are between 30cm and $3m \rightarrow f_r$ is in the microwave domain

The beatings offer information on phase differences. $\rightarrow f_r$ can be observed \rightarrow no information on f_0 is available

$$f_N - f_M = (N f_r + f_0) - (M f_r + f_0)$$

= (N - M)f_r

$Determining f_0$


Second Harmonic Generation scheme. Source:wikipedia. Generate a second OFC with double frequencies

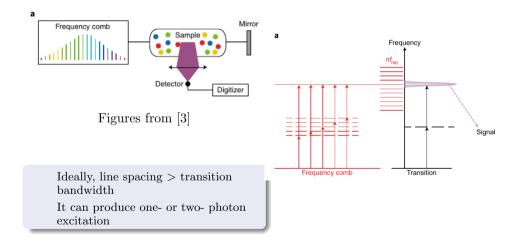
If some of the lines of the original and the "doubled" OFC interfere, the beatings offer information on f_0

$$2f_N - f_{2N} = 2(Nf_r + f_0) - (2Nf_r - f_0) = f_0$$

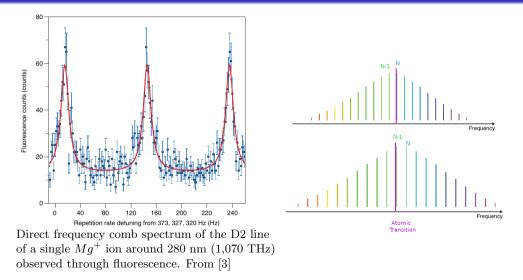
Optical Frequency Combs	Mode locking-cavity	Measuring with OFC	Applications of FC	Conclusions	
000000		00000			

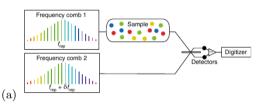
Determining $\overline{f_0}$

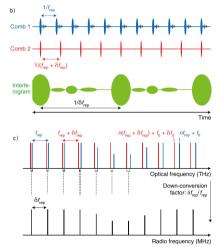
Contents


- 2 Optical Frequency Combs

- **(5)** Applications of FC

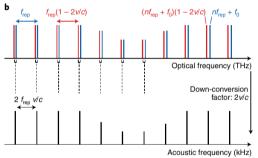



Direct Spectroscopy I


Direct Spectroscopy II

Dual-Comb Spectroscopy

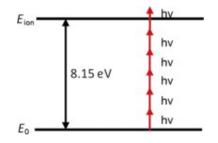
Schematic representation of Dual-Comb spectroscopy (a). Dual comb spectroscopy in the time domain (b) and in the frequency domain (c). From [2]



Michelson-based spectroscopy

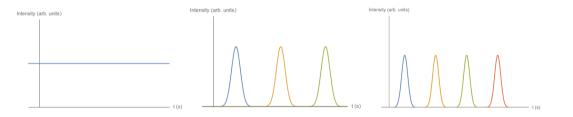
 \mathbf{a}

Schematic representation of Michelson-based spectroscoper (a). Dual comb spectroscopy in the time and in the frequency domains (b) From [2]


FC for the study of non-linear phenomena

- The experiments on non-linear phenomena (MPI, HHG^{*}, ATI^{*}...) are highly dependendent on the laser intensity (I)
- OFC could be new field of precision tests in nonlinear physics
- Higher repetition rates \rightarrow lower acquisition times

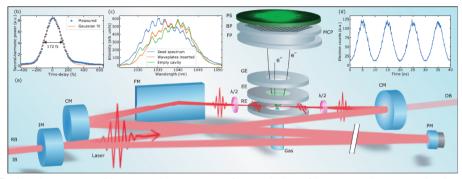
The problem:


Increasing the repetition rate decreases laser I

 $\begin{array}{l} HHG^{*} = High\text{-order Harmonic Generation} \\ ATI^{*} = Above \ Threshold \ Ionization \end{array}$

Multi-Photon ionization (MPI). Source: wikipedia.

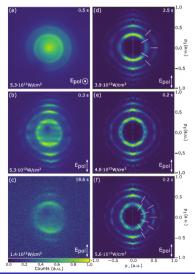
Increasing the repetition rate decreases intensity


Constant and pulsed emission of a laser.

Velocity-map imaging of multi-photon ionization (MPI) in xenon

100 MHz frequency comb for low-intensity multi-photon studies: intra-cavity velocity-map imaging of xenon

J. NAUTA,^{1,2,*} ⁽⁶⁾ J.-H. OELMANN,^{1,2} A. ACKERMANN,¹ P. KNAUER,¹ R. PAPPENBERGER,¹ A. BORODIN,¹ I. S. MUHAMMAD,¹ H. LEDWA,¹ T. PFEIFER,¹ AND J. R. CRESPO LÓPEZ-URRUTIA¹


Multi-photon ionization in xenon: experimental set-up

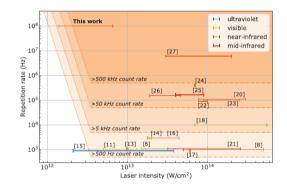


Fig. 1. Schematic overview of the experimental setup. (a) 100 MHz femtosecond pulses are fed into a resonant bow-tie cavity, where they are enhanced and focused on an effusive gas target. There, multi-photon ionization generates photoelectrons that are detected on a micro-channel plate (MCP) with its screen imaged by a camera. IB, incoming bears; IB, reflected bears; IM, input coupler mirror; CM, curved mirror; DB, diagnostic bears; FM, flat mirror; PM, piezo mirror; λ/2, half-wave plate; RE, repeller electrode; EE, extractor electrode; GE, ground electrode; FP, front plate; BP, back plate; PS, phosphor screen. (b) Auto-correlation measurement of the pulse length before entering the cavity, fitted assuming a Gaussian shape. (c) Comparison of the seed spectrum (blue) and intra-cavity spectrum with (orange) and without (green) half-wave plates inserted, showing no significant spectral narrowing due to the plates. (d) Arrival of electron bunches ionized by individual laser pulses, separated by 10 ns.

From [7]

Multi-photon ionization in xenon: experimental results

Photoelectron spectra for Xenon and contextualization of their work. Figures from [7].

FC for studying Highly Charged Ions (HCI)

Applications of HCI

- Improvement of atomic clocks.
- High sensitivity to the variation of fundamental constants (later).

The vast majority of electronic transitions in HCI are located in the extreme ultraviolet regime (XUV).

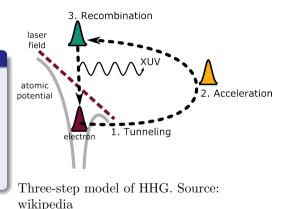
Applications of FC

FC for studying Highly Charged Ions (HCI)

Applications of HCI

- Improvement of atomic clocks.
- Advances in Quatum Computing.
- ۲ High sensitivity to the variation of fundamental constants (later).

The vast majority of electronic transitions in HCI are located in the extreme ultraviolet regime (XUV).


The challenge:

Create a Frequency Comb in the XUV regime using High-order Harmonic Generation (HHG).

Three-step model for High-order Harmonic Generation (HHG)

Process of HHG

- An atom is exposed to a very intense Electric Field (~ intraatomic Coulomb potential).
- **2** Tunnel ionization and propagation of the electron in the electric field.
- ③ Recollision with the parent ion → emission of High-order Harmonic of the original radiation.

FC for studying Highly Charged Ions

Towards precision measurements on highly charged ions using a high harmonic generation frequency comb

Janko Nauta^{a,*}, Andrii Borodin^a, Hans B. Ledwa^c, Julian Stark^a, Maria Schwarz^{a,b}, Lisa Schmöger^{a,b}, Peter Micke^{a,b}, José R. Crespo López-Urrutia^a, Thomas Pfeifer^a

Highly Charged Ions study: experimental set-up

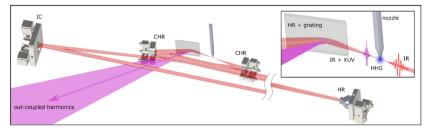
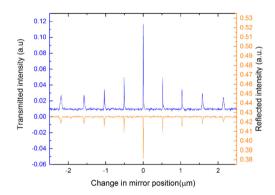
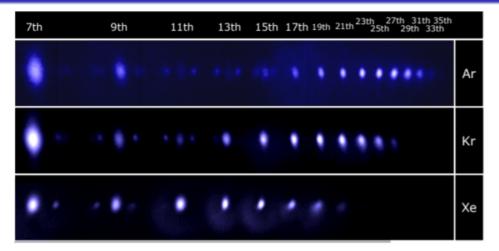



Fig. 1. Overview of the femtosecond enhancement cavity. Infrared (IR) pulses are coupled in through the in-coupling mirror (IC) and circulate in the cavity composed of four other high-reflective (HR) mirrors. In one of this mirrors, a shallow grating structure is etched. The inset shows high-order harmonic generation (HHC) inside the tight focus of the cavity, created by the two curved mirrors in the middle (CHR). The high-order harmonics (labeled XUV) propagate collinearly with the IR beam, and are coupled out of the cavity using the minus-first order diffraction of the grating.

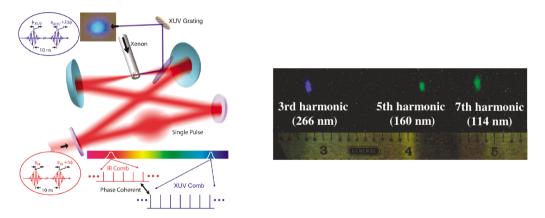
From [8]

Highly Charged Ions study: results for the cavity


Transmitted and reflected intensities from the enhacement cavity w.r.t. changes in the cavity length (from L = 3m). From [8]

- The central ressonance corresponds to a cavity length of 3m.
- It matches exactly the repetition rates cycles of 100MHz used in the experiment

$$L = \frac{c}{100MHz} = 3m.$$


• Next step → working on the production of the HHG.

Results on High-order Harmonic Generation

Fluorescence (from sodium salicycate) by various harmonic orders for three different target gases. From [9]

Previous work on cavity-enhaced High-order Harmonic Generation

Work of R. Jones, K. Moll, M. Thorpe, J. Le in HHG (2005). From [10]

Optical Frequency Combs	Mode locking-cavity	Measuring with OFC	Applications of FC	Conclusions	
			0000000000000000000000		

Other applications

More applications for frequency combs

• Applications of pulsed radiation with high intensity: Cornea laser operations, nuclear reactions...

 \rightarrow Nobel prize 2018: Gérard Mourou and Donna Strickland "for their method of generating high-intensity, ultra-short optical pulses."

- Study of other non-linear phenomena (second harmonic generation, parametric down conversion...).
- Spectroscopy in Astronomy: observation of exoplanets. [11]
- Precision measurements of fundamental constants.

Are the fundamental constants really **constant**?

Contents

1 Introduction

- 2 Optical Frequency Combs
- 3 Mode locking-cavity
- 4 Measuring with OFC
- **5** Applications of FC

Optical Frequency Combs	Mode locking-cavity	Measuring with OFC	Applications of FC	Conclusions	
000000		00000	000000000000000000000000000000000000000	000	

Conclusions

- Precision measurements are very important in science \rightarrow look where no one has looked before!
- Frequency Combs are a powerful tool for measuring frequencies with previosly unreached resolution.
- They are key for:
 - atomic clocks
 - highly precise spectroscopy
 - experiments on non-linear phenomena
 - other series of experiments that need high precision in frequency measurements
- Mode-locking techniques are a tool to create ultrashort pulsed radiation that ranges from ps to fs.

Thanks for listening! Any questions?

- McCarthy, D. D. & Seidelmann, P. K. "Microwave Atomic Clocks". 2nd ed., 171–202 (Cambridge University Press, 2018).
- 2. Fortier, T. & Baumann, E. "20 years of developments in optical frequency comb technology and applications". *Commun. Phys.* **2**, 153 (2019).
- 3. Picqué, N. & Hänsch, T. W. "Frequency comb spectroscopy". Nat. Phot. 13, 146–157 (2019).
- 4. de Valcárcel, G. J., Roldán, E. & Prati, F. "Semiclassical theory of amplification and lasing". *Rev. Mex. Fís.* **52**, 198–214 (2006).
- 5. Keller, U. & Gallmann, L. "Chapter 7: Active mode locking". Lecture slides of Ultrafast Laser Physics (ETH Zürich, Physics Department, Switzerland).
- Hänsch, T. W. "Nobel Lecture: Passion for precision". Rev. Mod. Phys. 78, 1297–1309 (2006).
- Nauta, J. et al. "100MHz frequency comb for low-intensity multi-photon studies: intra-cavity velocity-map imaging of xenon". Opt. Lett. 45, 2156–2159 (Apr. 2020).

- 8. Nauta, J. *et al.* "Towards precision measurements on highly charged ions using a high harmonic generation frequency comb". *Nucl. Instrum. Meth. Phys. Res. B* **408**, 285–288 (2017).
- 9. Nauta, J. *et al.* "XUV frequency comb operation in an astigmatism-compensated enhancement cavity". 2020. arXiv: 2011.11339.
- Jones, R. J., Moll, K. D., Thorpe, M. J. & Ye, J. "Phase-Coherent Frequency Combs in the Vacuum Ultraviolet via High-Harmonic Generation inside a Femtosecond Enhancement Cavity". *Phys. Rev. Lett.* **94**, 193201 (19 May 2005).
- 11. Wilken, T. *et al.* "A spectrograph for exoplanet observations calibrated at the centimetre-per-second level". *Nat.* **485**, 611–614 (2012).