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Introduction

Passion for precision

o With better measuring tools, one can look where no one has looked before.

In this talk...

@ Definition of Optical Frequency
Combs (OFC).

@ Description of a Mode-locking
technique to create them.

@ Determining the parameters of the

OFC.
e Applications of Frequency Combs.

4
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Measuring time I

What makes a good clock?

e Goal: increase the number of oscillations per unit time (ticks per second).

IS definition of the second

One second in the IS is measured as the
time taken by 9,192,631,770 cycles of
radiation from electrons moving between
the ground-state hyperfine transition
energy levels of the caesium-133 atom.
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Measuring time II
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Optical Frequency Combs

Optical modes

Ww=Nf +f
i OFC = coherent addition of 10° — 10¢ op-
I- » | tical cavity modes, spanning up to 100 nm
1 I > in the optical domain.

Adapted from [2]
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T.W. Hansch and J.L.Hall

“For their contributions
to the development of
laser-based precision
spectroscopy, including
the optical frequency
comb technique.”

Photo: Sears.P.Studio Photo: F.M. Schmidt
John L. Hall Theodor W. Hénsch
Prize share: 1/4 Prize share: 1/4
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Addition of modes

Monochromatic wave (in time space): W, () = Ay,cos(wnt + ¢)

Uy (t) + Wa(t)

A i, g
[

wi1+ws2
2

Fast oscillation —
Slow oscillation —

w1 —wa
2
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Addition of modes

Monochromatic wave (in time space): W, () = Ay,cos(wnt + ¢)

Uy (1) + Wy(t) S Wa(t)
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Optical Frequency Combs in the time domain

A —> |l 2Ad¢h —>ll

e A¢ = phase shift of
the carrier of the
wave relative to the
envelope of the

VN =N frop o pulses

; f; ‘

foulm e (T @ Induces the
A N i translation fy — 42
R ' T Freq of all the lines in the

spectrum from n f,.
Adapted from [3]
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Importance of the phase

U, (t) = Apcos(wnt + ¢)

Iit) Iit)

100

0 20 40 60 &0 100 120 140

Interference of N = 8 modes in phase (a) and with random relative phases (b)
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Mode locking-cavity
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The laser

Elements of a laser:
@ Cavity.
@ Active medium.
@ Pumping parameter.

laser light

A=\

Adapted from [4]
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Mode locking-cavity
[e]e] e}

Active mode locking

@ A modulator is introduced in the cavity T'(t) = M.

@ M(t) = M(cos(Qnt) — 1),
o Qy — frequency of the modulator (s—1),
o M — amplitude of the modulator.

Active modelocking T

| | Loss |

Saturated gain

/\Pulse intensity /| A
It |
@ { Time

J01e|NpojA

Cavity and evolution of the pulse when introducing the modulator. Adapted from [5]
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Creation of “locked” modes

@ Suppose initial monochromatic light E™*(t) o e 0!

Eout(t) _ T(t)Ezn(t) > €M(t>67iw0t
M (cos(Qart)—1) ,—iwot The period of the
modulator must have

=e
~ (1 4+ M(cos(Qut) —1))e 0"

M

= (1 — M)e_iwot + 7e—i(wo+QM)i + Me—i(wo—QM)t_
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1 \ i i :
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\ | | ! : .
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Measuring with OFC
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Optical Clocks

Optical modes
i\] - Nfr +f0

I‘fr

2

I+N4
ENg L
PHN4 [

3

I-

Adapted from [2]
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and microwave frequencies
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can mesh with both optical
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Measuring with OFC
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Determining f,

Longitudinal cavity mades

L R R T Typical cavity lengths are between

* 30cm and 3m — £, is in the
W microwave domain
& The beatings offer information on

phase differences.

R = Jr can be observed

— no information on fy is available

In = fu = (N fr + fo) — (M fr + fo)
Iy i

=" T. = 1/f,

Adapted from [2]
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Measuring with OFC
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Determining f

Generate a second OFC with double

frequencies
Non-linear
optlcal med|um
x@ >0 If some of the lines of the original and

the “doubled” OFC interfere, the
beatings offer information on fo

Second Harmonic Generation scheme.
Source:wikipedia.

2fn — fon = 2(N fr + fo) — (2N fr — fo) = fo
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Determining f
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Direct Spectroscopy I

a
Frequency comb Mirror
a
‘ Frequency
.l || ||||I| ot
Digitizer jE—
Figures from [3]
B Signal
M : o . Fi b T it

Ideally, line spacing > transition requency com ransition
bandwidth
It can produce one- or two- photon
excitation
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Direct Spectroscopy II

80

Fluorescence counts (counts)

0 40 80 120 160 200 220 240
Repetition rate detuning from 873, 327, 320 Hz (Hz)

Direct frequency comb spectrum of the D2 line
of a single M g™ ion around 280 nm (1,070 THz)
observed through fluorescence. From [3]
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Dual-Comb Spectroscopy

Frequency comb 1 l l l l l l | | |
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e®e . >
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— Digitizer
Frequency comb 2 Ry, A ‘rg‘gerzi;
| || | ‘ ||I II- N %
’::u+ﬁfr:p Time
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[ lmu+ﬁfm)+f+bf nf ot
. . °) P —
Schematic representation of Dual-Comb | ‘ | | | |
spectroscopy (a). Dual comb spectroscopy | |
. . . . T‘ Optical frequency (TH:
in the time domain (b) and in the frequency . oo
domain (c). From [2] o P fecto: 1/,

Radio frequency (MHz)
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Michelson-based spectroscopy

Moving b
Frequency comb I mirror frep frepl1=2viC) (Nhe, + )(1 =2viC) nf, + 1
. || | .. y
Detectors || |

a i * “J Lf Optical frequency (THz)

. . . i 3 3 E Down-conversion
Schematic representation of Michelson-based — 2¢_we factor: 2v/c
spectroscoper (a). Dual comb spectroscopy

in the time and in the frequency domains (b) | || |
From [2]
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Applications of FC
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FC for the study of non-linear phenomena

4+ hy
E
@ The experiments on non-linear phenomena = 1 i
(MPI, HHG*, ATT*...) are highly b
dependendent on the laser intensity (I) s -
@ OFC could be new field of precision tests 8.15 eV A h
in nonlinear physics 1 v
@ Higher repetition rates — lower hv
acquisition times 1 3 hv
4 ECI

The problem: Multi-Photon ionization (MPI). Source:
Increasing the repetition rate decreases laser I wikipedia.

HHG* = High-order Harmonic Generation
ATT* = Above Threshold Ionization
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Increasing the repetition rate decreases intensity

Intensity (arb. units)

Intensity {arb. units) Intensity (arb. units)

AN

Constant and pulsed emission of a laser.
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Velocity-map imaging of multi-photon ionization (MPI) in xenon

100 MHz frequency comb for low-intensity
multi-photon studies: intra-cavity velocity-map

imaging of xenon

J. NauTa,"2* ® J.-H. OELMANN,"2 A. ACKERMANN,' P. KNAUER,' R. PAPPENBERGER,'
A. BorobIN," |. S. MuHAMMAD,' H. LEDWA,' T. PFEIFER,"' AND J. R. CRESPO LOPEZ-URRUTIA'

24 /36
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Multi-photon ionization in xenon: experimental set-up

(b) (e) (O}
29 e e e -
=1 LY Gaussian it | ¥ 500 3
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Fig. 1. Schemaric overview of the experimental setup. (a) 100 MHz femtosecond pulses are fed into a resonant bow-tie cavity, where they are
enhanced and focused on an effusive gas target. There, multi-photon ionization generates photoelectrons that are detected on a micro-channel plate
(MCP) with its screen imaged by a camera. IB, incoming beam; RB, reflected beam; IM, input coupler mirror; CM, curved mirror; DB, diagnostic
beam; FM, flat mirror; PM, piezo mirror; 4 /2, half-wave plate; RE, repeller electrode; EE, extractor electrode; GE, ground electrode; FP, front plate;
BP back plate; PS, phosphor screen. (b) Auto-correlation measurement of the pulse length before entering the cavity, fitted assuming a Gaussian
shape. (c) Comparison of the seed spectrum (blue) and intra-cavity spectrum with (orange) and without (green) half-wave plates inserted, showing no
significant spectral narrowing due to the plates. (d) Arrival of electron bunches ionized by individual laser pulses, separated by 10 ns.

From (7]
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Multi-photon ionization in xenon: rimental results

" . This work H  ultraviolet
10 7 visible
H  near-infrared
—  mid-infrared

107 27)
— —_———
)
L

0 Wjem? 2108
53101 2Wjcm g 10 ' >500 kHz count rate [24]
c
S 26 [25
£ 105 & =
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&
[18]
4
10 >5 kHz count rate
{141 {16]
. 1157 1] (131 6] 1211 g
1o >500 Hz counft rate dz
1012 100 0%

Laser intensity (W/cm?)

Photoelectron spectra for Xenon and
contextualization of their work. Figures
from [7].
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FC for studying Highly Charged Ions (HCI)

plications of HCI

@ Improvement of atomic clocks.

@ High sensitivity to the variation of
fundamental constants (later).

The vast majority of electronic transitions in
HCI are located in the extreme ultraviolet
regime (XUV).
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Applications of FC

FC for studying Highly Charged Ions (HCI)
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Applications of HCI

@ Improvement of atomic clocks.

@ Advances in Quatum Computing.

The challenge:

@ High sensitivity to the variation of .
fundamental constants (later). Create a Frequency Comb in the XUV

/4 regime using High-order Harmonic
Generation (HHG).

The vast majority of electronic transitions in
HCI are located in the extreme ultraviolet
regime (XUV).
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Three-step model for High-order Harmonic Generation (HHG)

3. Recombination

laser

field b L PSS .~
Process of HHG S oo AANANY S
@ An atom is exposed to a very intense atomic s 9 A
Electric Field (~ intraatomic Coulomb potential ‘ "2. Acceleration
potential). o
@ Tunnel ionization and propagation of the e - cce=” °
electron in the electric field. electron 1+ Tunneling

@ Recollision with the parent ion —
emission of High-order Harmonic of the
original radiation.

A\

Three-step model of HHG. Source:
wikipedia
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FC for studying Highly Charged Ions

Towards precision measurements on highly charged ions using a high
harmonic generation frequency comb

Janko Nauta **, Andrii Borodin ®, Hans B. Ledwa, Julian Stark?, Maria Schwarz ®", Lisa Schméger*®,
Peter Micke *°, José R. Crespo Lépez-Urrutia®, Thomas Pfeifer®
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Highly Charged Ions study: experimental set-up

| nozzle
HR + grating |

N ‘
IR + XUV ‘W" 1

HHG

7) ,JM}.

Moy
-

"

out-coupled harmonics

Fig. 1. Overview of the femtosecond enhancement cavity. Infrared (IR) pulses are coupled in through the in-coupling mirror (IC) and circulate in the cavity composed of four
other high-reflective (HR) mirrors. In one of this mirrors, a shallow grating structure is etched. The inset shows high-order harmonic generation (HHG) inside the tight focus of
the cavity, created by the two curved mirrors in the middle (CHR). The high-order harmonics (labeled XUV) propagate collinearly with the IR beam, and are coupled out of the

From [8]

cavity using the minus-first order diffraction of the grating.
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Highly Charged Ions study:

results for the cavity

0.12 |
_. oo}
3 0
(] L =
> °3 @ The central ressonance corresponds
5 0% .z to a cavity length of 3m.
£ o004} \ ¢ 5
ke lnas €
E 1 T PO DI SN \VVORY PURN| Y W o % @ It matches exactly the repetl‘.mon
g ooor ) 0428 rates cycles of 100MHz used in the
T ooz ‘ 1 experiment

004 | ‘

L ¢ 3
0.06 : L L I . =~ —3m.
: 1 0 1 2 100M Hz

Change in mirror position(um)

@ Next step — working on the

Transmitted and reflected intensities from the
enhacement cavity w.r.t. changes in the cavity
length (from L = 3m). From [8]

production of the HHG.

Paula Barber Belda
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Results on High-order Harmonic Generation

3t

. 2
11th 13th 15th 17th 15th 21th”

Fluorescence (from sodium salicycate) by various harmonic orders for three different target gases.
From
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Previous work on cavity-enhaced High-order Harmonic Generation

XUV Grating

3rd harmonic 5th harmonic 7th harmonic
(266 nm) (160 nm) (114 nm)

single Pulse

A -A |
IR Comb

Phase Coherem\

Work of R. Jones, K. Moll, M. Thorpe, J. Le in HHG (2005). From [10]
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Other applications

@ Applications of pulsed radiation with high intensity: Cornea laser operations, nuclear
reactions...

— Nobel prize 2018: Gérard Mourou and Donna Strickland “for their method of
generating high-intensity, ultra-short optical pulses.”

@ Study of other non-linear phenomena (second harmonic generation, parametric down
conversion...).

@ Spectroscopy in Astronomy: observation of exoplanets. [11]

@ Precision measurements of fundamental constants.

Are the fundamental constants really constant? )
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Conclusions

@ Precision measurements are very important in science — look where no one has looked
before!

@ Frequency Combs are a powerful tool for measuring frequencies with previosly unreached
resolution.

@ They are key for:

e atomic clocks

o highly precise spectroscopy

e experiments on non-linear phenomena

o other series of experiments that need high precision in frequency measurements

@ Mode-locking techniques are a tool to create ultrashort pulsed radiation that ranges from ps
to fs.
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Thanks for listening!
Any questions?
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