

Physics at the LHC

Hot QCD matter produced in ultra-relativistic heavy-ion collisions

Lecture 2 January 8, 2020

Silvia Masciocchi GSI Darmstadt and Heidelberg University

Heavy-ion collisions: Little Bangs

Experimental program at the LHC, ALICE

Global characteristics

Bulk particle production

Quark-gluon plasma tomography with hard probes

Research plans for near and further future

Summary:

- Features of particle production in hadron interactions (pp on) inspire a thermodynamic treatment of QCD matter
- QCD phase diagram: μ_B and T
- With basic thermodynamic arguments, a phase transition from a hadron gas to a quark-gluon plasma is proposed

$$T_c \simeq 144 \,\text{MeV}$$
 $\epsilon_{\text{QGP}} \simeq 850 \,\text{MeV}/\text{fm}^3$

• Rigorous computations with Lattice QCD at $\mu_{B} = 0$:

 $T_{c}(\mu_{B}=\mu_{Q}=\mu_{S}=0) = (156.5 \pm 1.5) \text{ MeV}$

 $\epsilon_{\rm C} \approx 0.42 \text{ GeV/fm}^3$ (~2.5 x $\epsilon_{\rm nuclear}$)

(lattice at $\mu_B > 3T_c$ difficult. Progress in the last years!)

Heavy-ion collision evolution

Time ~ 10^{-22} s Volume ~ 50,000 fm³ < 10^{-40} m³

Outline

Heavy-ion collisions: Little Bangs

Experimental program at the LHC, ALICE

Global characteristics

Quark-gluon plasma tomography with hard probes

Research plans for near and further future

Outline

- Historical view: experimental opportunities, first theoretical ideas
- Thermodynamics of strongly interacting matter and phase diagram
- QCD matter under extreme conditions in nature and in the lab
- Global characteristics: centrality, energy density, multiplicities
- Bulk (soft) particle production
 - Thermal model, particle yields and chemical freeze-out
 - Small systems
 - (hyper-)(anti-)nuclei
 - Hydrodynamics, flow and correlations
 - Particle spectra, Blast-Wave fits and kinetic freeze-out
- Hard probes
 - Jets, heavy quarks, heavy quarkonia
- Future

Reminder: Ultra-relativistic heavy-ion collisions

- 1. Initial conditions, pre-equilibrium, hard scattering processes
- 2. Thermalization: equilibrium is established ($t_{eq} \le 1$ fm/c)
- **3**. Expansion and cooling ($t_{QGP} < 10 15$ fm/c)

≈ 10⁻²² s

- 4. Hadronization (quarks and gluons form hadrons)
- 5. Chemical freeze-out: inelastic collisions cease, yields are defined
- Kinetic freeze-out: elastic collisions cease, spectra are frozen (t_{had} ~ 3-5 fm/c)

Measurements can only be performed at stages 5 and 6 From those, we want to deduce information on phases 2, 3, 4

Particle yields

- 1. Initial conditions, pre-equilibrium, hard scattering processes
- 2. Thermalization: equilibrium is established ($t_{eq} \le 1$ fm/c)
- 3. Expansion and cooling ($t_{QGP} < 10 15$ fm/c)
- 4. Hadronization (quarks and gluons form hadrons)
- 5. Chemical freeze-out:

inelastic collisions cease

yields and the distribution over species are defined

- close to the phase boundary?
- hadron abundances in equilibrium?
- connection to hadronization?

6. Kinetic freeze-out: elastic collisions cease, spectra are frozen

YIELDS

SPECTRA

A Large Ion Collider Experiment

Track and vertex reconstruction

- L3 solenoid: B = 0.5 T → good acceptance for low momentum
- Inner Tracking System ITS in Run 1-2 with silicon pixel, drift and strip detectors
- Time Projection Chamber TPC
 90 m³ gas sensitive volume, in Run
 1-2 with multi-wire proportional chambers

Spatial resolution (at vertex) $\approx 10 - 20 \ \mu m$ Momentum resolution (perpendicular to beam) $\approx 1 \ \%$

Particle identification

- Time Projection Chamber TPC specific energy loss dE/dx in gas
- Inner Tracking System ITS specific energy loss dE/dx in silicon
- Transition Radiation Detector TRD electron/hadron separation, trigger
- Time-of Flight detector TOF complementing the TPC at higher p
- Calorimetry: EMCal, PHOS, DCAL
- Muon spectrometer

ALICE: particle identification

S.Masciocchi@gsi.de

Heavy-ion physics at the high-energy frontier - Lecture 2

Particle decays

Invariant mass distributions (ALICE)

S.Masciocchi@gsi.de

Heavy-ion physics at the high-energy frontier - Lecture 2

Heavy-ion physics at the high-energy frontier - Lecture 2

Collision phases

Hydrodynamic evolution + freeze-out

Bulk particle production Particles with momenta up to 2-3 GeV/c

Particle yields

and the thermal model (or statistical hadronisation model)

A. Andronic, P. Braun-Munzinger, K. Redlich and J. Stachel Nature, 561 (2018) 321

Heavy-ion physics at the high-energy frontier - Lecture 2

(p_T-integrated) hadron yields at mid-rapidity

- Central collisions
- π[±] (ud, ud), m=140 MeV K[±] (us, us), m=494 MeV p (uud), m=938 MeV Λ (uds), m= 1116 MeV not here: Ξ(dss), Ω(sss)
- At the highest energies: practically all newly created
- At lower energies:
 - Stopping power → baryons vs anti-b.
 - u, d quarks remnants from incoming nuclei

A. Andronic, arXiv:1407.5003

(p_T-integrated) hadron yields at mid-rapidity

 $π^{\pm}$ (ud, ud), m=140 MeV K[±] (us, us), m=494 MeV p (uud), m=938 MeV Λ (uds), m= 1116 MeV not here: Ξ(dss), Ω(sss)

- Particle abundances clearly follow the mass hierarchy
- Natural to think of the thermal model

A. Andronic, arXiv:1407.5003

 $\ln Z_{i} = \frac{V g_{i}}{2 \pi^{2}} \int_{0}^{\infty} \pm p^{2} dp \ln[1 \pm exp(-(E_{i} - \mu_{i})/T)]$

 $g_i = (2J_i+1)$ spin degeneracy factor

T temperature

 $E_i = \sqrt{(p^2 + m_i^2)}$ total energy; (+) for fermions, (-) for bosons

 $\mu_{i} = \mu_{B}B_{i} + \mu_{I3}I_{3i} + \mu_{S}S_{i} + \mu_{C}C_{i}$ chemical potentials (conservation on average of quantum numbers)

Initial conditions: I_3^{tot} , N_B^{tot} , $S^{tot}=0$, $C^{tot}=0$ (charm)

Based on the partition function Z, the individual hadron yields are:

$$n_{i} = \frac{N_{i}}{V} = -\frac{T}{V} \frac{\partial \ln Z_{i}}{\partial \mu} = \frac{g_{i}}{2\pi^{2}} \int_{0}^{\infty} \frac{p^{2} dp}{exp[(E_{i} - \mu_{i})/T] \pm 1}$$

- 555 particle species included in Z, up to light nuclei, charm, beauty
- Resonances are considered with their widths
- Canonical treatment applied whenever abundances are small

Fit: minimize

$$\chi^2 = \sum_{i} \frac{(\mathbf{N}_i^{exp} - \mathbf{N}_i^{therm})^2}{\sigma_i^2}$$

 N_i = measured hadron yield for particle i

 σ_i = experimental uncertainty (statistical and systematic)

Free parameters: T, μ_{B} , V ... test of assumption on chemical equilibrium

arXiv:1808.03102

Non-strange baryon sector treated in S-matrix formalism (π N scattering phase shifts) \rightarrow proton yield in model decreased by 17%

> $T_{CF} = 156.6 \pm 1.7 \text{ MeV}$ $\mu_{B} = 0.7 \pm 3.8 \text{ MeV}$ $V_{\Delta y=1} = 4175 \pm 380 \text{ fm}^{3}$

> > χ^2 /ndf = 16.7/19

Thermal fits at different collision energies: T_{CF} , μ_{B}

Central collisions

Thermal fits indicate a limiting temperature

$$T_{lim} = 158.4 \pm 1.4 \text{ MeV}$$

 $\mu_{\scriptscriptstyle B} \to 0 \; MeV$

NPA 772 (2006) 167 PLB 673 (2009) 142

Back to the phase diagram of QCD

ALICE 0-10% Pb-Pb data $\sqrt{s_{NN}}$ = 2.76 TeV

THERMUS: Wheaton et al, Comput.Phys.Commun, 180 84 GSI-Heidelberg: Andronic et al, Phys. Lett. B 673 142 SHARE: Petran et al, arXiv:1310.5108

QM2018

More thermal models

ALICE 0-10% Pb-Pb data $\sqrt{s_{NN}}$ = 5.02 TeV

THERMUS: Wheaton et al, Comput.Phys.Commun, 180 84 GSI-Heidelberg: Andronic et al, Phys. Lett. B 673 142 SHARE: Petran et al, arXiv:1310.5108

S.Masciocchi@gsi.de

Heavy-ion physics at the high-energy frontier - Lecture 2

QM2018

Also at the LHC, amount of charm produced thermally is very small (negligible).

Charm ($c\bar{c}$) produced in very early hard parton scatterings.

Still, experimental data (LHC) indicate thermalization of charm

Here: add 10 $c\overline{c}$ pairs "on top" at mid-rapidity (|y| < 0.5) (30 times the thermal amount)

arXiv:1901.09200

Production of light nuclei and anti-nuclei

and (anti-)hyper-nuclei

Time Projection Chamber (TPC)

Time-Of-Flight detector (TOF)

Low momenta: identification via specific energy loss dE/dx by particles in the gas of the TPC

High momenta: velocity measurement with TOF is used to calculate the m² distribution

Phys.Rev. C93 (2016) 024917

Nucl.Phys. A971 (2018) 1-20

Light nuclei and anti-nuclei:

Proton, deuteron, triton, ³He, ⁴He Hyper-triton ³_AHe

+ anti-particles

- Study their production mechanism
 Test model predictions, e.g. coalescence or thermal model
 - Dependence on collision system (AA, pp, pA)
- Search for rarely produced anti- and hyper-matter
- Measure their properties (example: $^{3}_{\Lambda}$ He lifetime)
- Explore QCD inspired model predictions for (unusual) multi-baryon states

Andronic, Braun-Munzinger, Redlich, Stachel arXiv: 1710.09425

Production: coalescence

J. I. Kapusta, PRC21, 1301 (1980)

- Nuclei are formed by protons and neutrons which are nearby in space and have similar velocities (after kinetic freeze-out)
- Produced nuclei can break apart, and be eventually formed by final state coalescence
- Original idea rather simplistic. More elaborate ideas being worked on

- Deuteron, tritium, ³He
 - Spectra
 - Nuclei and anti-nuclei production yields
 - Mass difference between nuclei and anti-nuclei
- ⁴He: α and $\overline{\alpha}$ particles
 - Mass dependence of yields
- Coalescence parameters

- Hyper-triton, its lifetime
- Exotica

³He and ³He in p-Pb

Measurement of ⁴He and ⁴He in ALICE

Nucl.Phys. A971 (2018) 1-20

2011 data: 10 candidates

Nuclei production yields follow an exponential decrease with mass, as predicted by the thermal model

 Lightest hyper-nucleus m = 2.99116 ± 0.00005 GeV/c² lifetime ~ 215 ps

³H and ³H

Loosely bound state: B_∧ ≈ 130 keV
 Large and fragile object

- Reconstructed via decay topology:
 - 2-prong: ${}^{3}H \rightarrow {}^{3}He + \pi^{-}$
 - 3-prong: ${}^{3}H \rightarrow d + p + \pi^{-}$

ALI-PREL-130195

STAR Collaboration, arXiv:1710.00436v1 [nucl-ex]

```
\tau = \left(142^{+24}_{-21}(stat.) \pm 31(syst.)\right) ps
```

Puzzle: lifetime shorter than the one of the free Λ ?

 \rightarrow decisive measurements with 2018 Pb-Pb data !

2018 Pb-Pb data $\sqrt{s_{_{\rm NN}}}$ = 5.02 TeV

ALI-PREL-342050

2018 data results: no puzzle

The measurement of the difference between the ratios of mass and charge of deuterons (d) and anti-deuterons (d) and of ³He and ³He confirms CPT invariance to an unprecedented precision for light nuclei

Bulk particle production

