
Electron-proton scattering
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1. Elastic ep-scattering and the proton radius
2. Deep-inelastic (DIS) electron proton scattering

For reference: 
This section of the lecture follows closely chapter 7 and 8 of          
M. Thomson’s Modern Particle Physics however provide a few 
more recent experimental results.

(1) Is largely a recap of PEP4  (we will not discuss all details)  



Electron-proton scattering
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Relativistic electron-proton scattering probe the structure of the proton:

• at  “low energy” - elastic scattering is dominant process: “virtual photon” probes 
the proton as whole and provides proton properties like the charge radius (PEP4)   

• At “high energy” – inelastic scattering: proton breaks up. Understood as the elastic 
scattering of the electron on point-like charged proton constitutes, i.e. quarks.
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1/Q2 >> rp
2:  proton appears point like   (Rutherford)

1/Q2 ≈ rp
2 :  proton charge distribution resolved (Rosenbluth)

1/Q2 << rp
2 :  probe internal proton structure  (DIS)

Relevant quantity to distinguish between the diff. regimes is Q2=-q2 of virtual photon: 



1. Elastic ep-scattering and the proton radius
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In the limit that the proton can be treated as a point-like spin ½ particle (Dirac 
fermion, ignore inner degrees of freedom) one can use Feynman rules to write 
down the matrix element (assume highly relativistic electrons E1 >> me):

θ

recoil
e

p

2p

2 2
1 3( )q p p= −

pm
4p

1e p
3e p 1 1 1

2

3 3 3 3

4 4 4

0 0
0 0 0

0

( , , , )
( , , , )
( , , sin , cos )
( , )

p

p E E
p m

p E E E
p E p

θ θ

=

=

=

=


In general only electron 
quantities measured.
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Following the prescription of the QED theory lecture one can determine the 
average matrix element summed over all final state spin states: 
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Using 2 2 2 2
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Resulting in the differential cross section in the lab:
Reminder in CMS:

In lab for fixed target:
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Often called “Dirac cross section“:                                            
e-scattering at a “point-like” proton (academic case!)

(See e.g. Thomson, Ch 3)
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We can recognize different pieces known to us:

Rutherford cross section for scattering of 
a scalar particle on a Coulomb potential:
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Term E3/E1 accounts for the electrons energy loss due to the proton recoil.

Mott cross section: for relativistic electron scattering w/ spin ½ at a Coulomb 
potential of a point-like particle in the limit Q2 << mp

2  and E1 < mp (see PEP4):
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describes the magnetic interaction between the spin 
of the electron and the proton spin (relevant only for 
large Q2)
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In case of electron scattering at an extended charge distribution the Mott cross 
section needs to be corrected by the form factor of the charge distribution: 
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With the form factor being the Fourier transform of the charge distribution:
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for spherical symmetric charge distributions ρ(r)
(integration over the polar angle possible)             
→ F is a function of q2 

For one can expand the integrand and obtains: 
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formula used to extract the 
proton charge radius (see below)

(discussed in PEP4)
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ρ(r)

(from Thomson, Modern Particle Physics)

Form factors for different charge distributions:



e - scattering on an extended proton 
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Following the introduction of the form factors for Mott scattering two form-
factors are introduced to account for the finite size of the proton:
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related to the charge distribution ρ(r)

related to the magnetic moment distribution µ(r)

The elastic electron-proton cross section can be written as;
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Remarks:
Form factors depend on the Q2 = 4-vector of the virtual photon  (FF in the Mott 
cross section were dependent on 3-vector     ) and therefore cannot be simply 
interpreted as the Fourier transform of the charge / magnetic moment distribution.
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However in the limit Q2 << mp
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Rsoenbluth / Dirac cross section was obtained for a Dirac fermion with g=2: 
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The proton however is a composed object and experimentally the g-factor is 

5 58 2 79 2
2

. .p
qg S
m

µ= + = ⋅ ⋅




To correctly describe the experimental observation the magnetic moment 
distribution has to be normalized correspondingly:
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i.e., if one assumes the same shape for GE and GM, one expects GM to be 
scaled up by a factor 2.79. 
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Determination of GE(Q2) and GM(Q2)

Although one expects similar shape for the two form factors, GE and GM should 
be determined independently. Dividing the Rosnbluth formula by the Mott cross 
section one obtains:
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While low Q2 data determines GE
2(Q2) and high Q2 data determines GM

2(Q2) one 
can obtain GE

2(Q2) and GM
2(Q2) for general Q2 using the Rosenbluth separation

Cross section is measured for different electron energy E1 and different 
scattering angle θ → plot the Mott normalized cross section as function of tanθ/2
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Rosenbluth separation

(from Thomson,  Modern Particle Physics)
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Taken from Thomson, 
Data from E. B. Hughes et al. (1965)

The solid line is a dipole form factor model:
22
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= form factor of exponential charge distr.

( ) arr eρ −= with  a=4.27 fm-1

2 2 2 10 71 4 27. GeV . fma a −= → =

One also  finds that GE and GM follow the same dipole shape (scaled).

From the exponential distribution one can determine the proton charge 
radius, defined  as           one finds  rp = 0.81 fm.

1 22r

Instead of fitting the form factor shape one can also extrapolate to Q2 = 0 an 
determine the slope at Q2 = 0 of the measured behavior (see above) 
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 
done in many recent measurements.



13

Most precise determination of the proton charge radius from ep scattering:
A1 collaboration at Mainz Microtron (MAMI):
electron beams of 150 – 855 MeV, liquid hydrogen target and 3 high resolution spectrometers 
Variation of scattering angles and beam energy in more than 500 settings (J.C. Bernauer et al. 
PRL 105 (2010) 242001 and PRC 90 (2014) 015206)

https://arxiv.org/pdf/1307.6227

Authors determine a proton electric 
charge radius of 

Consistent with earlier ep scattering 
Results but inconsistent with the 
most recent results from 
spectroscopy.

0 879 7. ( ) fmpr =
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Proton radius from Lamb shift determined in hydrogen spectroscopy

2s-2p transition frequency (Lamb shift) is influenced by the overlap of the 2s 
orbital with H+ (proton) charge distribution (p-orbitals have no overlap).

Sensitivity to the proton radius is low
(difficult to make precise measurement): 
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α

−∆ ⋅ ⋅

However w/ muonic hydrogen w/ mµ ≈ 200 me the effect is about 107 times larger:
Measurement of 2s-2p splitting in muonic hydrogen allows precise determination of 
the proton charge radius rp.

Muonic-hydrogen (µp) experiment  at PSI:
µ- stopped in a hydrogen target → highly excited µp atoms (n≈14): 
The excited atoms mostly de-excite to the 1s ground state.
About 1% of de-excitation also populate the stable 2s state. 

Using laser light ( ~6µm) to induce the 2s-2p transition 
→ de-excitation to 1s ground state → emission of 1.9 keV X-ray

Method: measure the emission of X-rays as a function of the laser tuning. 

reduced mass
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49.88188 (70) THz
rp = 0.84184 (67) fm
much more precise, but 5σ below CODATA value of 0.8768 (69) fm

R. Pohl et al, Nature 466 (2010) 213

= “Proton radius puzzle”

~6 laser induced 
events per hour
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Recent summary of the proton radius data:

New hydrogen results since 2010: improvement from new laser techniques and better 
control of systematic.
New ep scattering since 2010:  new Mainz measurement using ISR techniques  to 
access lower Q2 values; new results from PRad (Jlab, windowless target).  
In addition different theoretical revisions (TPE, radiative corrections, dispersion relations 
to interpret FF). 

→ very active field!

Mainz ISR
PRad

https://doi.org/10.3390/universe9040182

Mainz 2010



2. Deep-inelastic electron proton scattering
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Elastic scattering:  no excitation of inner degrees of freedom, no proton break-up  

1 3E Eν = −Increase energy transfer                     from electron to 
proton beyond the level of the proton recoil (           )

Inelastic scattering:
∆+(1232)

∆+(1688)

N(1450)

Kontinuum

W = invariant mass of hadron system

E3

2 variables to 
describe 

kinematics of
inelastic 

scattering

Elastic peak 
(scaled down 

by 1/15)

2 2q q≠

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Observations:

• Excitations ( ∆+(1232), N(1420), … ) of the proton
• At higher energy transfer (smaller E3) one observes a continuum, cannot 

be explained by the Q2 dependence of a compact proton w/ F(Q2) ~ 1/Q4.

This would lead to a strong suppression ~1/Q8 → here: proton breaks up.

Kinematics of inelastic scattering:
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
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W = invariant mass of
hadronic system
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W always  ≥ mp. Reason: 
baryon number conservation.
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2 pp q m ν=→

Elastic: W = mp

→ 2

p

p q
m

ν =



19

Define a new Lorentz invariant dimensionless variable (important to describe 
parton distributions in the proton):  Bjorken x

2 2

22 2 p

Q Qx
p q m ν

= =

Using the mass W of hadronic system one can rewrite x:
2

2 2 2
p

Qx
Q W m

=
+ − 0 1x≤ ≤

1x = for elastic scattering W=mp

Another dimensionless variable is the inelasticity y: 2
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y
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=

In the rest frame of the proton 2 0 0 0( , , , )pp m= 1 3 3
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1
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m E E
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= = −
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One finds with                            the following useful relations:
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2
1 2( )s p p= +

2 2( )pQ s m xy= −and
Out of  Q2, x, y, ν
2 variables needed to 
define kinematics!



20

Express the Rosenbluth formula of elastic scattering with these variables:
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+
=

+

2 2 2
1( ) ( )Mf Q G Q=with and

Remark:  While y appears on the RH side, it is a function of Q2 only as the 
scattering is elastic (x=1) ! 

Modified Rosenbluth formula can be generalized for inelastic scattering by replacing 
the two form factors f1 and f2 by so called structure functions F1(x,Q2) and F1(x,Q2).
(structure functions F1,2 should depend on 2 variables to reflect the inelastic case)

2 2 22
2 22

12 2 2
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xdQ Q Q
σ πα   
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For deep-inelastic scattering where Q2 >> mp
2y2
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 
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24 p

Q
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For fixed target electron-proton scattering the necessary kinematic variables x, Q2, y 
can all be determined form the electron system:  E1, E3, e scattering angle θ

First measurements of the structure functions (SLAC & MIT, 1969):

Dipole and quadrupole 
magnets

Cherenkov counter for 
e/π separation

e- beam, 5…20  GeV

[ ]%25.0%;1.0∈
∆
p
p

mrad7.0~%1.0~ θ∆
∆
p
p

Spectrometer at given θ

Electron beam from 2 miles LINAC

Hydrogen target

(J. Friedman, H. Kendall and R. Taylor, Nobel prize 1990)

“8 GeV spectrometer”



22in front:  8 GeV spectrometer,  in back: 20 GeV spectrometer 
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22 1
Q

QF ~)(

Dipol-FormF.

Cross section and structure function F2

Two observations/findings:
1) Bjorken scaling:
F1,2 are functions of x and not (x,Q2)

1 1 2 2( ) ( )F F x F F x= =
(no explicit Q2 dependence)

2) F1 and F2 are not independent:

2 12( ) ( )F x x F x=
= Callan Gross relation

The lack of Q2 dependence suggests the 
scattering on point-like constituents. The 
Callan-Gross relation: Spin ½ constituents

Confirms quarks as point-like constituents of the proton.



DIS ep-scattering in the parton model
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Both observations become clear if the scattering is discussed in the parton model.

Parton model is formulated in the infinite momentum frame: the proton has a very 
large (infinite) energy EP >> mp and its mass can be neglected:   p2 = (E2, 0, 0, E2)

Feynman, 1969

In this model the proton is a “stream of partons” 
(constituents). The transverse momentum of the 
partons can be neglected.

4-momentum of struck quark

2 2 20 0( , , , )qp p E Eξ ξ ξ= =
ξ = proton 4-momentum fraction carried by  quark

Invariant mass of the quark after interaction:
2 2 2 2 2

2 2 22( ) qp q p p q q mξ ξ ξ+ = + + =
2 2

2pξQuark mass before interaction

Possible only if 2
22 0p q qξ + =

2 2

2 22 2
q Q x
p q p q

ξ = − = =

Process possible only if momentum fraction 
carried by quark equals the Bjorken variable x!

e

xξ =
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Interesting finding:

Inelastic cross sections measured as function of the Bjorken variable x  and the 
structure functions F1,2 are related to the momentum distribution of the quarks. 

The kinematic variables of the underlying e-quark scattering process are 
related to the kinematic variables of the electron-proton scattering process.

2
1 2 1 22( )s p p p p= + ≈ 2

1 2 1 22( )qs p p xp p xsξ= + ≈ =
xξ =

2

2 1

p q
y

p p
=

2

22
Qx
p q

= 2

1 2 1

q
q

q

p q xp q
y y

p p xp p
= = = 1qx = (elastic)

e-proton kinematics: e-quark kinematics:

To calculate the total electron-proton cross section in the parton model the 
fundamental e-quark cross section eq→eq is needed. However a similar 
cross section has already been calculated as t-channel contribution of                
e+e- → e+e- (Bhabha scattering)   .

defined by electron kinematics
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Cross section of the fundamental eq→eq process: 

γ
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qeQ
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∗ ∗
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=
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22 q q
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M Q e

t
 +

=   
 

(see lecture on ee annihilation)

Diff. cross section in CMS frame  (θ* is scattering angle in CMS frame) :

Lorentz invariant form – use:

2 2
eq eqd d d

dq d dq
σ σ ∗

∗

Ω
=

Ω
22 2 2
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2
1 1eq q
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d Q q
sdq q
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2
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2

21 1 2 1
2

( ) ( ) yy y
 

 + − = − +  
 

quark charge
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To calculate the deep-inelastic electron-proton cross section from the 
fundamental (elastic) electron-quark cross section one needs to sum over all 
possible quark flavor and weight the contribution with the probability to find a 
corresponding quark with the correct parton momentum fraction x.

The probability density            for a quark of flavor i is defined such that
Gives the probability to find a quark of flavor I carrying a proton momentum 
fraction                     .

( )iq x ( )iq x dx

[ ],x x dx∈ +

The DIS electron-proton cross section in the parton model s then given by:

2 2
2

2 4

4 1
2

( ) ( )ep
i i

i

d yy Q q x
dxdQ Q

σ πα  
= − + ⋅ 

 
∑

Comparison w/ the phenomenological result defines the structure functions:

( )
2

22
12 2

4 1
( ) ( )epd F x

y y F x
xdxdQ Q

σ πα  = − +  
2

2 12( ) ( ) ( )i i
i

F x x F x x Q q x= = ∑

Parton model predicts Bjorken scaling (elastic scattering on point-like  constituents  
(no explicit Q2 dependence) and Callan-Gross relation (spin ½ partons). 



Parton distributions / parton densities
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In static quark model, proton is made-up from 2 u-quarks and 1 d-quark 
(=valence quarks). If there was no interaction between the quarks one simply 
would assume that each quark carries 1/3 of the proton momentum.

In reality the proton is a dynamic system: 
quarks are bound strongly by exchanging 
gluons. Gluons could also – shortly –
convert into additional qq pairs.  

This leads to the presence of additional qq pairs (in addition to the 3 valence 
quarks): sea  quarks – most frequently uu and dd, but also ss and even cc 
and bb pairs (strongly suppressed).

Dynamic effects lead to 
modified quark momentum 
distributions q(x).  
Please note that the peak 
at 1/3 ignores that the 
gluons also carry 
momentum (see below). 
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Structure functions for e-nucleon scattering:

For the e-proton scattering the structure function F2(x) is thus given by:

2
2

4 1 4 1
9 9 9 9

( ) ( ) ( ) ( ) ( ) ( )ep
i i

i
F x x Q q x x u x d x u x d x = ≈ + + +  

∑

neglect s-quarks

where                    are the parton density distributions of the u, d quark and 
anti-quarks of the proton (sum of valence and sea quarks). 

, , ,u u d d

2
2

4 1 4 1
9 9 9 9

( ) ( ) ( ) ( ) ( ) ( )en n n n n
i i

i
F x x Q q x x u x d x u x d x = ≈ + + +  

∑

, ,
,

n p n p

n p n p

u d d u d d
d u u d u u

= = = =

= = = =

Isospin symmetry relates the parton densities of proton and neutron:

A similar expression could also be written down for DIS electron-neutron 
scattering (measurement done usings deuterons and correcting for proton)
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To calculate the proton / neutron momentum carried by the quarks one should 
integrate  the  structure functions over x:

2
4 1
9 9

( )ep
u dF x dx f f= +∫ with [ ]( ) ( )uf u x u x dx= +∫

( ) ( )df d x d x dx = + ∫
and for the neutron

2
4 1
9 9

( )en
d uF x dx f f= +∫

Experimentally one finds for the two integrals:

2 0 18( ) .epF x dx ≈∫ 2 0 12( ) .enF x dx ≈∫

Solving for the integrals of the u and d quarks: one gets:

0 36.uf ≈ 0 18.df ≈and

This means that the sum of the quarks (u,d) carry only ~50% of the  proton 
momentum fraction: rest is carried by …???? The gluons!

0 54.u df f+ ≈



Precision determination of F2 and of the parton distributions
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After the first SLAC measurements many different DIS experiments  have 
been conducted to determine  F2 and of the parton distribution of the proton:
Instead of electron also muons and neutrinos (CC interactions) have been used

µ scatteringA summary of early F2 measurements 
is shown in the plot: it covers a much 
extended Q2 range and much different x-
values than the early SLAC 
measurements (range given in the box)

Scaling violation:
What is clearly noticeable is that F2
(scaled in the plot to avoid overlap) is 
has indeed very little Q2 dependence 
for the early SLAC measurements 
(box). However at different Q2 values 
and for different x-values the predicted 
“scaling behavior” is violated and F2 is a 
clear function of both (x, Q2).
Reason: large dynamic effects between 
quarks ignored by simple parton model. 
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“Qualitative explanation” of observed scaling violation  

Scattering at large x → mostly valence quark, at small x → mostly sea quark 

⇒ F2 or fixed (large) x  ↓ ⇒ F2 for fixed (small) x ↑

Scaling violation is a clear manifestation of radiative effects predicted 
by QCD.  PDFs ( and structure functions) depend on Q2 and x.

Exact quantitative description (DGLAP) is the topic of next semester!

Changing Q2 one can change “the resolution” of the virtual photon (λ):

PDF = Parton Distribution/density Functions

Q2 ↑ Q2 ↑



Precise measurement of PDFs at HERA 
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HERA GeV30 GeV900
25GeV104 ≈= peEEs

e p
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H1 detector ZEUS detector
p

p
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x

Q2

Determination of PDFs relies on factorization
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Linear scale for illustration (it is not 
exactly the same pdf set, but nearly)

Eur.Phys.J.C75 (2015) 12, 580 

20
1

QCD fit to the data – proton PDFs for a given Q2 scale  

Remarks: 
• At low x, sea quarks dominate (xS in the plot) the scattering → huge gluon content
• While the proton C
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20
1

20
1

Q2 evolution (predicted by QCD – DGLAP)

https://www.desy.de/h1zeus/combined_results/

The most dramatic of these [experimental consequences] is 
that the protons viewed at ever higher resolution would 
appear more and more as field energy (soft glue), was only 
clearly verified at HERA ...   F. Wilczek [Nobel Prize 2004]

DGLAP = Dokshitzer, 
Gribov, Lipatoiv
Altarelli, Parisi
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