
4 Quantum Chromodynamics

After introducing QED as a U(1)-gauge interaction and the weak force as an SU(2)-gauge interaction, the step to the

strong interaction or QCD with based on SU(3) gauge invariance is structurally simple. In particular, we assume, in

agreement with all existing measurements, that the gluons as the QCD gauge bosons as massless and that their

interaction is not affected by the weak quantum numbers or the fermion doublet structure. This means we can build

QCD as a non-abelian version of QED. We will see that QCD, in spite of the structural similarity to QED, has

especially interesting properties and equally interesting experimental consequences.

4.1 QCD Lagrangian

We start with the SU(3)-version of the same argument we made for SU(2) from Eq.(3.17) on. The SU(3)
transformations are given by

U = eiαaTa with T1,2,3 =
1

2

(
τ1,2,3 0
0 0

)
· · · (4.1)

with a = 1 ... N2
c − 1 = 1 ... 8 and the number of colors in the fundamental representation, Nc = 3. Please note the

conventional factor 1/2 relative to the Pauli matrices. The (3× 3) matrices Ta are the traceless, hermitian, and unitary

Gell-Mann matrices. We give the first three of them in terms of the Pauli matrices, but there is no point in writing

them down because we only need their algebraic properties to compute the color factors of scattering amplitudes,

[Ta, Tb] = ifabcTc and Tr(TaTb) = TRδab ≡ 1

2
δab . (4.2)

Here, fabc are the antisymmetric structure constants of SU(3) with

facdfbcd = Ncδab . (4.3)

The one formula we need to compute color factors for quark processes will be

(Ta)ij(Ta)k� =
1

2

(
δi�δjk − 1

Nc
δijδk�

)
. (4.4)

The QCD Lagrangian can be constructed as a non-abelian massless version of the QED Lagrangian. For the

dimension-4 Lagrangian we follow Eq.(3.23), limit ourselves to the quarks as fermions charged under SU(3), and

write

LQCD = q̄ii /Dqj − 1

4
Fa,μνF

μν
a , (4.5)

with the gluon field strength tensor

Fa,μν = ∂μAa,ν − ∂νAa,μ − igs[Aμ, Aν ]a , (4.6)

and the SU(3)-covariant derivative with the appropriate color indices

(Dμ)ij = ∂μ11ij − igsAμ,a(Ta)ij (4.7)

From these formulas we see immediately that the quark propagators are the same as for QED, and unlike for the weak

interaction we do not have to keep track of the chirality. The quark-quark-gluon interaction is very similar to the

quark-quark-photon vertex in Eq.(1.40),

−igs γμ (Ta)ij (qi − q̄j − ga,μ). (4.8)
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The only additional element is the SU(3)-matrix, and we already see that all color matrices in a scattering process

will form traces along the quark line(s). This means that color factors factorize from the Dirac algebra and can be

computed independently.

Let us start with the electroweak processes

e+e− → qq̄ and qq̄ → e+e− (4.9)

Here no gluons appear at leading order, which means we do not have any matrices T a in our calculations.

Nevertheless, a color factor appears because we sum over the (identical) colors of the two external quarks. We can

write this color sum for the squared matrix element formally as

δijδji = δii = Nc (4.10)

The different between the process e+e− → qq̄ and qq̄ → e+e− is that for the former we sum over the color states in

the final state and for the latter we average over the color states in the initial state, giving us another factor 1/Nc. Let

us now radiate a gluon from any of these processes, for instance

e+e− → qq̄g and qq̄ → e+e−g (4.11)

First, we have to deal with another gluon in the Dirac traces, just like when radiating a photon. In addition, there is the

color contribution in Eq.(4.8),

(Ta)ij(Ta)ji = Tr(TaTa) =
1

2
δaa =

N2
c − 1

2
. (4.12)

It can be expressed in terms of the fundamental Casimir as

Tr(TaTa) = NcCF with CF =
N2

c − 1

2Nc
=
4

3
, (4.13)

Another example is the successive radiation of two gluons from a hard quark,

q → qgagb . (4.14)

Depending on the order of the two gluons, we first find the planar color factor,

Tr(T aT aT bT b) = (T aT a)il(T
bT b)li

=
1

4

(
δilδjj − δijδjl

Nc

)(
δilδjj − δijδjl

Nc

)

=
1

4

(
δilNc − δil

Nc

)(
δilNc − δil

Nc

)

= Nc

(
N2

c − 1

2Nc

)2

= NcC
2
F =

16

3
= O(N3

c ) . (4.15)

When we cross the gluon lines between the diagram and its complex conjugate we get the same way

Tr(TaTbTaTb) = −CF

2
= −2

3
= O(Nc) . (4.16)

That contribution is suppressed by a factor eight, which means that two gluons have a significant preference for

ordered emission.

We can also compute the color factor for the purely gluonic theory, i.e. radiating gluons off two hard gluons in the

final state. For instance, planar double gluon emission with the exchanged gluon indices b and f gives us the largest

color factor

fabdfabefdfgfefg = Ncδ
de Ncδ

de = O(N3
c ) , (4.17)

now independent of the ordering.
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4.2 Ghosts

The main complication of QCD compared to QED comes from the kinetic term of the gluons, where we keep in mind

that for non-abelian gauge groups the term Fa,μνF
μν
a gives rise to the gauge boson propagator and to the

self-interactions. We immediately see this when we insert the formula in Eq.(4.6) into the Lagrangian of Eq.(4.5) and

encounter up to four powers of the gluon field, and no derivative.

Let us go back to QED, where in Sec. 3.2 we emphasize that photons have only two transverse degree of freedom and

then still write the gluon field in terms of a 4-vector Aμ, effectively consisting of four degrees of freedom. How does

QED ensure that in the actual calculation the longitudinal and the scalar degrees of freedom do not contribute?

The way to tackle this question is through the gauges introduced in Eq.(3.54), simplified in the massless limit to

Δμν(p) =
−i

p2 + iε

[
gμν + (ξ − 1)

pμpν

p2

]
=

⎧⎪⎪⎨
⎪⎪⎩

−i
p2 + iε

gμν Feynman gauge ξ = 1

−i
p2 + iε

[
gμν − pμpν

p2

]
Landau/Lorenz gauge ξ = 0 .

(4.18)

Here we need to be careful with the word ‘gauge’, because the different forms of the propagator have nothing to do

with the gauge symmetry of the Lagrangian. The unitary gauge makes no sense for massless particles. For the weak

bosons the unitary gauge was the only way to decouple and get right of the Goldstone modes.

To learn how to remove the unwanted degrees of freedom we write the photon Lagrangian from Eq.(3.1) such that it

gives us the photon propagator from Eq.(4.18) in the Rξ gauge. We only quote the result as

Lphoton, gf = −1
4
FμνF

μν − 1

2ξ
(∂μA

μ)2 . (4.19)

In analogy to Eq.(1.7) this Lagrangian gives us the equation of motion

∂μ∂μAν −
(
1 +

1

ξ

)
∂μ∂νAμ = 0 . (4.20)

It is equivalent to the version without the gauge fixing term, in that it requires the d’Alembert equation for the photon

and the Lorenz gauge condition.

From the massive photon example we know how to turn Eq.(4.19) gauge-invariant. From the weak gauge bosons we

also know how to switch from one gluon propagator to another — again we need to introduce another field. For the

massless gauge bosons we will refer to these new fields as ghosts. Let us start with the QED Lagrangian including the

gauge fixing term corresponding to the general photon propagator,

Lphoton-gf = −1
4
FμνF

μν − 1

2ξ
(∂μA

μ)2 . (4.21)

Because we know from Eq.(3.2) that Fμν is U(1)-gauge invariant, we also know that the Lagrangian in Rξ gauge is

not locally U(1)-symmetric. From Eq.(3.2) we remember the gauge transformation of the photon as

Aμ → Aμ − 1

e
∂μα

− 1

2ξ
(∂μA

μ)2 → − 1

2ξ

(
∂μA

μ − 1

e
∂2α

)2

≈ − 1

2ξ
(∂μA

μ)2 +
1

eξ
(∂μA

μ)(∂2α) . (4.22)

In the last step we ignore higher powers of α, because we are working with infinitesimal gauge transformations. To

turn this Lagrangian gauge invariant we add an auxiliary field c̄ such that

Lphoton-ghost = −1
4
FμνF

μν − 1

2ξ
(∂μA

μ)2 + c̄ ∂2α , (4.23)
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We see that the combination of the gauge fixing term and this new term is gauge-invariant if

c̄→ c̄− 1

eξ
(∂μA

μ) . (4.24)

To give a meaning to this auxiliary term we move one of the derivatives through an integration by parts. In this form

the additional term in the Lagrangian makes sense if we upgrade α to another field, α→ c, such that the auxiliary c̄
and the upgraded c form a complex scalar,

Lphoton-ghost = −1
4
FμνF

μν − 1

2ξ
(∂μA

μ)2 + (∂μc̄) (∂
μα)

→ −1
4
FμνF

μν − 1

2ξ
(∂μA

μ)2 + (∂μc̄) (∂
μc) . (4.25)

In Eq.(3.11) we have seen something similar, namely a scalar field added to the QED Lagrangian to make sure the

massive degrees of freedom are correctly described. Because the unitary gauge is not defined in Eq.(4.18), there is no

gauge choice for which we can decouple and neglect the ghosts, they have to be computed in the Lorenz and in the

Feynman gauges. What saves us in QED is that they do not appear elsewhere in the Lagrangian, so they are

propagating but non-interacting fields. For our QED calculations this means that they are irrelevant and we can ignore

them.

The situation changes because of the non-abelian structure of QCD, which replaces the standard derivative with a

covariant derivative in the gauge transformation and also in the kinetic term for the ghosts. The gauge-fixed

Lagrangian with the compensating ghost fields then reads

Lgluon-ghost = −1
4
Fa,μνF

μν
a − 1

2ξ
(∂μA

μ
a)

2 − (∂μc̄a)(∂μca) + gsfabcA
μ
a(∂μc̄b)cc . (4.26)

The gluon propagator in the Rξ gauge is the same as the photon propagator in Eq.(4.18), just with a factor δab in the

numerator. We are skipping the crucial triple and quartic gluon self-interactions, because they are lengthy. However,

we can write down the ghost Feynman rules, including the ghost propagator following from Eq.(4.26)

− δab
p2 + iε

(4.27)

and the ghost-ghost-gluon interaction

−igfabcpμ (c− c̄− g) , (4.28)

where pμ is the 4-momentum of the incoming ghost field.

Because we derived the ghosts through gauge invariance, we can at least for external gluons follow a slightly different

direction to ensure the correct degrees of freedom contribute to the matrix element. For a matrix element with two

external gluonsMμν the explicit condition is

pμMμν = 0 = pνMμν , (4.29)

and we can enforce it by projectingMμμ onto the allowed tensor structures. Following the same line of thought for

propagators leads us back to Eq.(4.18), where we find for the so-called transverse tensor

Tμν = gμν − pνpμ

p2
⇒ pμT

μν = 0 = pνT
μν . (4.30)

It is a projector on the transverse degrees of freedom because

TμνT ρ
ν =

(
gμν − pνpμ

p2

)(
gρν −

pνp
ρ

p2

)

= gμρ − pμpρ

p2
− pρpμ

p2
+

p2pμpρ

p4
= Tμρ . (4.31)

This means that the gauge propagator in Lorenz gauge is guaranteed to be transverse in the covariant sense. The

problem with this argument is that propagators define individual Feynman diagrams, and gauge invariance only holds

for all Feynman diagrams combined. This means that for internal gluons, including loop integrals, even the Lorenz

gauge does not ensure the correct gluon polarization and we always have to include the ghosts explicitly.

33



4.3 Ultraviolet divergences

Renormalization as the proper treatment of ultraviolet divergences is one of the most important things to understand

about quantum field theory. It is driven by the appearance of ultraviolet divergences, which we first regularize, i.e.
describe in a well-defined manner, and then renormalize away through counter terms. This renormalization leads to

the appearance of the renormalization scale.

Scales automatically arise from infrared or ultraviolet divergences. We can see this by writing down a simple scalar

loop integral, with to two virtual scalar propagators with masses m1,2 and an external momentum p flowing through a

diagram,

B(p2;m1,m2) ≡
∫

d4q

16π2

1

q2 −m2
1

1

(q + p)2 −m2
2

. (4.32)

Such two-point functions appear for example in the gluon self energy with virtual gluons, with massless ghost scalars,

with a Dirac trace in the numerator for quarks, and with massive scalars for supersymmetric scalar quarks. In those

cases the two masses are identical m1 = m2. The integration measure 1/(16π2) is dictated by the Feynman rule for

the integration over loop momenta. Counting powers of q, we see that the integral behaves like

B(p2;m1,m2) ∼ 1

16π2

∫
d4q

q4
(4.33)

in the ultraviolet, so it is logarithmically divergent.

One regularization scheme is a cutoff into the momentum integral Λ, for example through the so-called Pauli—Villars

regularization. Because the ultraviolet behavior of the integrand or integral cannot depend on any parameter living at a

small energy scales, the parameterization of the ultraviolet divergence in Eq.(4.32) cannot involve the mass m or the

external momentum p2. The scalar two-point function has mass dimension zero, so its divergence has to be

proportional to log(Λ/μR) with a dimensionless prefactor and some scale μ2
R which is an artifact of the regularization

of such a Feynman diagram. Because it is an artifact, this scale μR has to eventually vanish from our theory prediction.

A more elegant regularization scheme is dimensional regularization. It is designed not to break gauge invariance and

naively seems to not introduce a mass scale μR. When we shift the momentum integration from 4 to 4− 2ε
dimensions and use analytic continuation in the number of space–time dimensions to renormalize the theory, a

renormalization scale μR appears when we ensure the two-point function and with it observables like cross sections

keep their correct mass dimension∫
d4q

16π2

1

q2 −m2
1

1

(q + p)2 −m2
2

→ μ2ε
R

∫
d4−2εq

16π2

1

q2 −m2
1

1

(q + p)2 −m2
2

=
iμ2ε

R

(4π)2

[
C−1

ε
+ C0 + C1 ε+O(ε2)

]
. (4.34)

The constants Ci in the series in 1/ε depend on the loop integral. To regularize the ultraviolet divergence we go into

the limit ε > 0 and find mathematically well defined poles 1/ε. Defining scalar integrals with the integration measure

1/(iπ2) will make for example C−1 come out as of the order O(1). This is the reason we usually find factors

1/(4π)2 = π2/(2π)4 in front of the loop integrals.

4.4 Counter terms

The ultraviolet poles in 1/ε will cancel with universal counter terms once we renormalize the theory. We include

counter terms by shifting parameters in the Lagrangian and the leading order matrix element. They cancel the poles

for example from virtual one-loop diagrams,

|MLO(g) +Mvirt|2 = |MLO(g)|2 + 2Re MLO(g)Mvirt + · · ·
→ |MLO(g + δg)|2 + 2Re MLO(g)Mvirt + · · ·

with g → gbare = g + δg and δg ∝ αs/ε . (4.35)
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The dots indicate higher orders in αs.

The counter terms do not come with a factor μ2ε
R , so this factor will not be matched between the actual ultraviolet

divergence and the counter term. We can keep track of the renormalization scale best by expanding the prefactor of the

regularized but not yet renormalized integral in Eq.(4.34) in a Taylor series in ε, no question asked about convergence

radii

μ2ε
R

[
C−1

ε
+ C0 +O(ε)

]
= e2ε log μR

[
C−1

ε
+ C0 +O(ε)

]

=
[
1 + 2ε logμR +O(ε2)] [

C−1

ε
+ C0 +O(ε)

]

=
C−1

ε
+ C0 + C−1 logμ

2
R +O(ε)

→ C−1

ε
+ C0 + C−1 log

μ2
R

M2
+O(ε) . (4.36)

In the last step we correct by hand for the fact that logμ2
R with a mass dimension inside the logarithm cannot appear in

our calculations. From somewhere else in our calculation the logarithm will be matched with a logM2 where M2 is

the typical mass or energy scale in our process. This little argument shows that also in dimensional regularization we

introduce a mass scale μR which appears as log(μ2
R/M

2) in the renormalized expression for our observables.

In Eq.(4.36) there appear two finite contributions to a given observable, the expected C0 and the

renormalization–induced C−1. Because the factors C−1 are linked to the counter terms in the theory we can often

guess them without actually computing the complete loop integral, which is very useful in cases where they

numerically dominate.

Counter terms are not uniquely defined. They remove a given divergence to return finite observables, but we are free

to add any finite contribution we want. This opens many ways to define a counter term for example based on physical

processes where counter terms do not only cancel the pole but also finite contributions at a given order in perturbation

theory. An example for such a physical renormalization scheme is the on–shell scheme for masses, where we define a

counter term such that external on–shell particles do not receive any corrections to their masses. For the top mass this

means

mbare
t = mt + δmt

= mt +mt
αsCF

4π

(
3

(
−1
ε
+ γE − log(4π)− log

μ2
R

M2

)
− 4 + 3 log

m2
t

M2

)

≡ mt +mt
αsCF

4π

(
−3
ε̃
− 4 + 3 log

m2
t

M2

)
⇔ 1

ε̃
(μR

M

) ≡ 1

ε
− γE + log

4πμ2
R

M2
, (4.37)

with the color factor CF = (N2 − 1)/(2N) and the Euler constant γE ≈ 0.577 coming from the evaluation of the

Gamma function Γ(ε) = 1/ε+ γE +O(ε). The convenient scale dependent pole 1/ε̃ includes the universal additional

terms like the Euler gamma function and the scaling logarithm. This logarithm is the big problem in this universality

argument, since we need to introduce the arbitrary energy scale M to separate the universal logarithm of the

renormalization scale and the parameter-dependent logarithm of the physical process.

Another example for a process dependent renormalization scheme is the mixing of γ and Z propagators. There we

choose the counter term of the weak mixing angle such that an on–shell Z boson cannot oscillate into a photon, and

vice versa.

One common feature of all mass counter terms is δm ∝ m, which means that our renormalization is multiplicative,

mbare = Zm m = (1 + δZm)m =

(
1 +

δm

m

)
m = m+ δm with δZm =

δm

m
, (4.38)

This form implies that particles with zero mass will not obtain a finite mass through renormalization. If we remember

that chiral symmetry protects a Lagrangian from acquiring fermion masses this means that on–shell renormalization
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does not break this symmetry. A massless theory cannot become massive by mass renormalization. Regularization

and renormalization schemes which do not break symmetries of the Lagrangian are ideal.

Another way of introducing counter terms is by defining a renormalization point. This can be the energy scale at which

the counter terms cancels all higher order contributions, divergent as well as finite. The best known example is the

electric charge which we renormalize in the Thomson limit of zero momentum transfer through the photon propagator

e→ ebare = e+ δe . (4.39)

Finally, there is a way to define a completely general counter term: if dimensional regularization does not break any of

the symmetries of our Lagrangian, we can simply subtract the ultraviolet pole. The only question is: do we subtract

1/ε in the MS scheme or 1/ε̃ in the MS scheme. In the MS scheme the counter term becomes scale dependent.

Carefully counting, there are three scales we need to consider:

1. the physical scale in the process, like the top mass mt in the matrix element for the top decay;

2. the renormalization scale μR, a reference scale as part of the definition of the counter term;

3. The scale M separating the counter term from the process dependent result, which we can choose however we

want. The role of M will become clear when we go through the example of the running strong coupling αs.

Of course, we would prefer to choose all three scales the same, but in a complex physical process this will not be

possible. For example, any massive (2→ 3) production process naturally involves several external physical scales.

4.5 Running coupling

To get an idea what these different scales mean we compute the running strong coupling αs(μ
2
R). A simple process

where we can study it is bottom pair production, where at some energy range we will be dominated by valence quarks:

qq̄ → bb̄. The only Feynman diagram is an s-channel off–shell gluon with momentum p2 ≡ s,

At next–to–leading order this gluon propagator will be corrected by self energy loops, where the gluon splits into two

quarks or gluons and re-combines before it produces the two final–state bottoms. Let us for now assume that all

quarks are massless. The Feynman diagrams for the gluon self energy include a quark look, a gluon loop, and the

ghost loop which removes the unphysical degrees of freedom of the gluon inside the loop:

+ +

The gluon self energy correction or so-called vacuum polarization will be a scalar. All fermion lines close in the

Feynman diagram and the Dirac trace is computed inside the loop. In color space the self energy will (hopefully) be

diagonal, just like the gluon propagator itself, so we can ignore the color indices for now. In Lorenz gauge the gluon

propagator is proportional to the transverse tensor defined in Eq.(4.30). The same should be true for the gluon self
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energy, which we therefore write as Πμν ≡ ΠTμν . Including the gluon, quark, and ghost loops the regularized gluon

self energy with a momentum flow p2 through the propagator reads

− 1

p2
Π

(
μ2
R

p2

)
=

αs

4π

(
−1
ε̃
+ log

p2

M2

) (
13

6
Nc − 2

3
nf

)
+O(logm2

t )

≡ αs

(
−1
ε̃
+ log

p2

M2

)
b0 +O(logm2

t )

with b0 =
1

4π

(
13

6
Nc − 2

3
nf

)

but really b0 =
1

4π

(
11

3
Nc − 2

3
nf

)
SM
> 0 . (4.40)

The number of fermions coupling to the gluons is nf . The factor b0 reflects the one-loop corrections. Strictly

speaking, it gives the first term in a perturbative series in the strong coupling αs = g2s/(4π).

In the last step of Eq.(4.40) we have snuck in additional contributions by replacing the factor 13/6 by a factor 11/3.

This is related to the fact that there are actually three types of divergent virtual gluon diagrams in the physical process

qq̄ → bb̄: the external quark self energies with renormalization factors Z
1/2
f , the internal gluon self energy ZA, and the

vertex corrections ZAff . The physical parameters we can renormalize in this process are the strong coupling and the

quark masses. Wave function renormalization constants are not physical. The entire divergence which eventually

needs to be absorbed in Zg is given by the combination

ZAff = ZgZ
1/2
A Zf ⇔ ZAff

Z
1/2
A Zf

≡ Zg . (4.41)

This changes the factor from 13/6 to 11/3 in the running of the strong coupling.

We can check this definition of Zg by comparing all vertices in which the strong coupling gs appears, namely the

gluon coupling to quarks and ghosts, as well as the triple and quartic gluon vertex. All of them need to have the same

divergence structure

ZAff

Z
1/2
A Zf

!
=

ZAcc

Z
1/2
A Zc

!
=

Z3A

Z
3/2
A

!
=

√
Z4A

Z2
A

. (4.42)

If we had done the same calculation in QED and looked for a running electric charge, we would have found that the

vacuum polarization diagrams for the photon do account for the entire counter term of the electric charge. The other

two renormalization constants ZAff and Zf cancel because of gauge invariance.

In contrast to QED, the strong coupling diverges in the Thomson limit because QCD is confined towards large

distances and weakly coupled at small distances. Lacking a well enough motivated reference point we are lead to

renormalize αs = g2s/(4π) in the MS scheme. From Eq.(4.40) we know that the ultraviolet pole which needs to be

cancelled by the counter term is proportional to the function b0

αbare
s =

(
1 +

δαs

αs

)
αs

MS
=

⎛
⎝1− Π

p2

∣∣∣∣∣
pole

⎞
⎠αs(M

2)

Eq.(4.40)
=

⎛
⎝1− αs

ε̃
(μR

M

) b0

⎞
⎠αs(M

2) . (4.43)

Here we explicitly include the scale dependence of the counter term. Because the bare coupling does not depend on

any scales, this means that αs depends on an unphysical scale M . However, we can relate it to the momentum flowing

through the gluon propagator p2 and write according to Eq.(4.40)

αbare
s = αs(p

2)

(
1− αs(p

2)b0
ε̃

+ αs(p
2)b0 log

p2

M2

)
. (4.44)
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On the right hand side αs is now evaluated as a function of the physical scale p2. The lograrithm just shifts the

argument of ε̃ from M2 to p2. This means the formula defines a running coupling αs(p
2) and accounts for shifts

between the physical scale p2 and the general scale M2 coming out of the MS scheme. Identifying the right-hand

sides of Eqs.(4.43) and (4.44) we can link the two scales as via

αs(M
2) = αs(p

2) + α2
s(p

2)b0 log
p2

M2
= αs(p

2)

(
1 + αs(p

2)b0 log
p2

M2

)

⇔ dαs(p
2)

d log p2
= −α2

s(p
2)b0 +O(α3

s) . (4.45)

To the given loop order the argument of the strong coupling squared on the right side can be neglected — its effect is

of higher order. We nevertheless keep the argument as a higher order effect to later distinguish different approaches to

the running coupling. From Eq.(4.40) we know that b0 > 0, which means that towards larger scales the strong

coupling has a negative slope, so the ultraviolet limit of the strong coupling is zero and QCD is asymptotically free.
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