2.6 Excitation Spectrum of He-II: Landau Model

Landau's concept of critical velocity

```
superconductors }\longrightarrow\mathrm{ energy gap
superfluid He-II }\longrightarrow\mathrm{ no energy gap, but velocity gap!
```


comment:

phonons can be excited at arbitrary small energies

Landau's Gedankenexperiment: dropping a massive sphere in $\mathrm{He}-\mathrm{II}$ at $T=0$
let's assume that sphere generates one excitation with energy \mathcal{E} and momentum \boldsymbol{p}

How fast must this sphere fall in He-II to generate dissipation?

energy conservation
$\frac{1}{2} \mathcal{M} v^{2}=\frac{1}{2} \mathcal{M} v^{\prime 2}+\mathcal{E}$
momentum conservation
not all combinations of \mathcal{E} and \boldsymbol{p} fulfill both conservation law's at the same time, even if the direction of the excitation is not fixed
$\mathcal{M} \boldsymbol{v}-\boldsymbol{p}=\mathcal{M} \boldsymbol{v}^{\prime}$
let's test this: square (2) and divide by $2 \mathcal{M} \longrightarrow \frac{1}{2} \mathcal{M} v^{2}-\boldsymbol{v} \cdot \boldsymbol{p}+\frac{1}{2 \mathcal{M}} p^{2}=\frac{1}{2} \mathcal{M} v^{\prime 2}$ comparison with (1) results in: with $\boldsymbol{v} \| \boldsymbol{p}$

$$
\boldsymbol{v} \cdot \boldsymbol{p}-\frac{1}{2 \mathcal{M}} p^{2}=\mathcal{E}
$$

$\Longrightarrow v_{\mathrm{c}}=\frac{\mathcal{E}}{p}$ independent of nature of excitation

$$
\text { phonons: } \quad v_{\mathrm{c}}=238 \mathrm{~m} \mathrm{~s}^{-1}
$$

$$
\text { rotons: } \quad v_{\mathrm{c}} \approx 60 \mathrm{~ms}^{-1}
$$

free ${ }^{4} \mathrm{He}$ atom: $\quad v_{\mathrm{c}}=0 \quad \longleftarrow \quad$ do not exist in $\mathrm{He}-\mathrm{II}$

- no excitation for $v<v_{\mathrm{c}}$

\rightarrow no dissipation \longrightarrow superfluidity
- for $v \geq v_{\mathrm{c}}$ sudden onset of dissipation, laminar \longrightarrow turbulent flow

Testbed for the generation of excitations and the critical velocity
type of ions:

- electrons (-) : zero-point motion \longrightarrow bubbles $r=19 \AA$
- ${ }^{4} \mathrm{He}^{+}, \mathrm{H}_{2}{ }^{+}{ }^{(+)}$: attract He atoms \longrightarrow snowballs $r \approx 7 \AA$
- other ions $(-,+)$: properties depend on wave function

Electrons in liquid He
electrons need energy to be emerged in helium $\sim 1 \mathrm{eV}$, which means they need more that 1 eV of kinetic energy to enter liquid He .

comment:

similar to work function of electrons in metals
bubble formation

Energy of bubble

size depends on pressure

exploding bubbles at negative pressure

2.7 Motion of lons in He-II

Creation of negative pressure and observation of bubbles

Sonoluminescence

NiCr Heating Wire

Collapsing bubbles are of great technical importance

Extracorporeal shockwave therapy using cavitation processes

Acceleration of ions in constant field
\longrightarrow constant drift velocity is reached $\quad \bar{v}_{\mathrm{d}}=\frac{q \mathcal{E}}{6 \pi \eta r}$
mobility:

Stokes law of viscos friction

impurities, which at some level are always present
collision partners: phonons, rotons, ${ }^{3} \mathrm{He}, \ldots$
0.7 K < T < 1.8 K: rotons should dominate however, difficult to observe because of other excitations / impurities mobility for roton scattering

$$
\begin{aligned}
\mu \propto \frac{1}{\eta} \propto \frac{1}{\tau} & \propto \frac{1}{n_{\mathrm{r}}} \\
\eta & =\frac{1}{3} \varrho v^{2} \tau=\frac{1}{3} \varrho v \ell
\end{aligned}
$$

2.7 Motion of lons in He-II

in ultra-pure He-II under pressure ions can be accelerated up to Landau velocity

- negative ions accelerated in electric field under high pressure
- drag is measured by time-of-flight method
- in He-I: drag proportional to velocity
- in He-II: drag is not observable until critical velocity is reached

- $v_{\mathrm{L}} \widehat{=} v_{\mathrm{c}}$ Landau velocity
- roton pair production
- $p \uparrow \longrightarrow v_{\mathrm{L}} \downarrow$ since $\Delta_{\mathrm{r}}(p)$
decreases with pressure

$T<0.3 \mathrm{~K}$

no thermal rotons are excited
phonons mean free path becomes very large \longrightarrow several $\mathrm{cm}!\quad v_{\mathrm{c}} \rightarrow 238 \frac{\mathrm{~m}}{\mathrm{~s}} ?$
experimental answer: no! $\bar{v}_{\mathrm{d}}=10 \ldots 100 \mathrm{~cm} / \mathrm{s}$
in addition: $\bar{v}_{\text {d decreases }}$ with energy of ions, which means it decreases with accelerating field

Experiment by Rayfield and Reif 1964

explanation:

- creation of vortex rings and trapping of ions
- experiment observes motion of vortex rings

vortex rings

kinetic energy of vortex ring: He-II $\varrho \rightarrow \varrho_{\text {s }}$

$$
E_{\mathrm{vr}}=\int \frac{1}{2} \varrho_{\mathrm{s}} v_{\mathrm{s}}^{2} \mathrm{~d} V=\frac{1}{2} \varrho_{\mathrm{s}} \kappa^{2} r\left[\ln \left(\frac{8 r}{a_{0}}\right)-\frac{7}{4}\right] \propto r
$$

momentum of vortex ring $\quad p_{\mathrm{vr}}=\pi \varrho_{\mathrm{s}} \kappa r^{2}$
$\Longrightarrow v_{\mathrm{vr}}=\frac{\partial E}{\partial p_{\mathrm{vr}}}=\frac{\kappa}{4 \pi r}\left[\ln \left(\frac{8 r}{a_{0}}\right)-\frac{1}{4}\right]$
$\longrightarrow \quad p_{\mathrm{vr}} \propto r^{2} \propto E_{\mathrm{vr}}^{2} \quad$ and $\quad v_{\mathrm{vr}} \propto 1 / E$
$E_{\mathrm{vr}} \propto \sqrt{p_{\mathrm{vr}}}$
as observed
dispersion of vortex ring

Explanation of the experiment by Rayfield and Reif

- generation of vortex rings
- ions are captured by vortex ring
- field increases kinetic energy of vortex ring

$$
v_{\mathrm{vr}} \propto \frac{1}{r} \propto \frac{1}{E_{\mathrm{vr}}}
$$

- theory line with $a_{0}=1.2 \AA$

