2.6 Excitation Spectrum of He-II: Landau Model

Landau's concept of critical velocity

superconductors ---- energy gap

superfluid He-II — no energy gap, but velocity gap!

comment:

phonons can be excited at arbitrary small energies

Landau's Gedankenexperiment: dropping a massive sphere in He-II at T = 0

let's assume that sphere generates one excitation with energy ${\mathcal E}$ and momentum ${\boldsymbol p}$

How fast must this sphere fall in He-II to generate dissipation?

energy conservation

$$\frac{1}{2}\mathcal{M}v^2 = \frac{1}{2}\mathcal{M}v'^2 + \mathcal{E} \tag{1}$$

momentum conservation

$$\mathcal{M}\boldsymbol{v} - \boldsymbol{p} = \mathcal{M}\boldsymbol{v}'$$
 (2)

not all combinations of $\mathcal E$ and p fulfill both conservation law's at the same time, even if the direction of the excitation is not fixed

2.6 Excitation Spectrum of He-II: Landau Model

let's test this: square (2) and divide by
$$2\mathcal{M}$$
 \longrightarrow $\frac{1}{2}\mathcal{M}v^2 - \boldsymbol{v}\cdot\boldsymbol{p} + \frac{1}{2\mathcal{M}}\,p^2 = \frac{1}{2}\mathcal{M}v'^2$

comparison with (1) results in:
$$\mathbf{v}\cdot\mathbf{p}-\frac{1}{2\mathcal{M}}p^2=\mathcal{E}$$

with $oldsymbol{v} \parallel oldsymbol{p}$

mass of sphere is large

$$lacksquare$$
 $v_{
m c}=rac{\mathcal{E}}{p}$

independent of nature of excitation

phonons: $v_{\rm c}=238\,{\rm m\,s^{-1}}$

rotons: $v_{\rm c} \approx 60\,{\rm m\,s^{-1}}$

free 4 He atom: $v_{
m c}=0$ \longrightarrow do not exist in He-II

- ightharpoonup no excitation for $v < v_{
 m c}$
- no dissipation —— superfluidity
- ightharpoonup for $v \geq v_{
 m c}$ sudden onset of dissipation, laminar \longrightarrow turbulent flow

Testbed for the generation of excitations and the critical velocity

type of ions:

▶ electrons (–) : zero-point motion \longrightarrow bubbles r = 19 Å

▶ 4 He $^{+}$, H $_{2}$ $^{+}$ (+) : attract He atoms \longrightarrow snowballs $r \approx 7 \text{ Å}$

▶ other ions (-, +) : properties depend on wave function

Electrons in liquid He

electrons need energy to be emerged in helium ~ 1 eV, which means they need more that 1 eV of kinetic energy to enter liquid He.

bubble formation

comment:

similar to work function of electrons in metals

Energy of bubble

$$E_{\rm b} = \frac{h^2}{8mr^2} + 4\pi r^2 \alpha + \frac{4}{3}\pi r^3 p$$
 volume zero-point energy surface tension
$$\alpha = 3.41 ~\mu \rm J/cm^2$$

bubble size:

$$\frac{\partial E}{\partial r} = 0$$
 \longrightarrow $r_{\min}(p = 0) = 19 \text{ Å}$

size depends on pressure

exploding bubbles at negative pressure

Creation of negative pressure and observation of bubbles

Generation of Bubbles and Cavitation Processes

Sonoluminescence

Sonoluminescence in water

Generation of Bubbles and Cavitation Processes

Collapsing bubbles are of great technical importance

Extracorporeal shockwave therapy using cavitation processes

Acceleration of ions in constant field

constant drift velocity is reached

 $\overline{v}_{\rm d} = \frac{q\mathcal{E}}{6\pi\eta r}$

constant electrical field ${\cal E}$

mobility:

$$\mu = rac{\overline{v}_{
m d}}{\mathcal{E}} = rac{q}{6\pi\eta r}$$
 snowball (electrons 4π)

Stokes law of viscos friction

collision partners: phonons, rotons, ³He, ...

impurities, which at some level are always present

0.7 K < T < 1.8 K: rotons should dominate however, difficult to observe because of other excitations / impurities

mobility for roton scattering

$$\mu \propto \frac{1}{\eta} \propto \frac{1}{\tau} \propto \frac{1}{n_{\rm r}}$$

$$\eta = \frac{1}{3} \varrho v^2 \tau = \frac{1}{3} \varrho v \ell$$

in ultra-pure He-II under pressure ions can be accelerated up to Landau velocity

- negative ions accelerated in electric field under high pressure
- drag is measured by time-of-flight method
- in He-I: drag proportional to velocity
- ▶ in He-II: drag is not observable until critical velocity is reached

- $lacktriangleright v_{
 m L} \ \widehat{=} \ v_{
 m c}$ Landau velocity
- roton pair production
- $p\uparrow \longrightarrow v_{\rm L}\downarrow {\rm since}~\Delta_{\rm r}(p)$ decreases with pressure

T < 0.3 K

no thermal rotons are excited

phonons mean free path becomes very large ------- several cm!

$$v_{\rm c}
ightarrow 238 \, rac{
m m}{
m s}$$
 ?

experimental answer: no! $\overline{v}_d = 10 \dots 100 \text{ cm/s}$

in addition: $\overline{v}_{
m d}$ decreases with energy of ions, which means

it decreases with accelerating field

Experiment by Rayfield and Reif 1964

measurement of ion velocity by time of flight

explanation:

- creation of vortex rings and trapping of ions
- experiment observes motion of vortex rings

vortex rings

kinetic energy of vortex ring: He-II $\,arrho
ightarrow arrho_{
m S}$

$$E_{\rm vr} = \int \frac{1}{2} \varrho_{\rm s} v_{\rm s}^2 dV = \frac{1}{2} \varrho_{\rm s} \kappa^2 r \left[\ln \left(\frac{8r}{a_0} \right) - \frac{7}{4} \right] \propto r$$

momentum of vortex ring $p_{
m vr}=\pi arrho_{
m s} \kappa r^2$

$$v_{\rm vr} = \frac{\partial E}{\partial p_{\rm vr}} = \frac{\kappa}{4\pi r} \left[\ln \left(\frac{8r}{a_0} \right) - \frac{1}{4} \right]$$

$$ightharpoonup p_{
m vr} \propto r^2 \propto E_{
m vr}^2$$
 and $v_{
m vr} \propto 1/E$

$$ightharpoonup$$
 $E_{
m vr} \propto \sqrt{p_{
m vr}}$

dispersion of vortex ring

Explanation of the experiment by Rayfield and Reif

- generation of vortex rings
- ions are captured by vortex ring
- field increases kinetic energy of vortex ring

$$v_{
m vr} \propto rac{1}{r} \propto rac{1}{E_{
m vr}}$$

▶ theory line with $a_0 = 1.2 \text{ Å}$

let's revisit the flow experiments through capillaries

because of $E_{\rm vr} \propto \sqrt{p_{\rm vr}}$, largest possible vortex is has minimal critical velocity

for capillary with diameter d

$$v_{\rm c,vr} = \frac{\hbar}{m_4 d} \left[\ln \left(\frac{4d}{a_0} \right) - \frac{1}{4} \right] \propto \frac{1}{d}$$

qualitative agreement with flow experiments in capillaries

