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0.1 Notation for Relativity

De�ne 
oordinates x

0

= 
t, x

1

= x, x

2

= y, x

3

= z. Consider a homogeneous Lorentz

tranformation (x

0

; x

1

; x

2

; x

3

) ! (x

00

; x

01

; x

02

; x

03

). This means any 
ombination of ve-

lo
ity tranformations and rotations. A set of four quantities a

�

(� = 0; 1; 2; 3) tran-

forming a

ording to the rule

a

�

�! a

0�

=

�x

0�

�x

0

a

0

+

�x

0�

�x

1

a

1

+

�x

0�

�x

2

a

2

+

�x

0�

�x

3

a

3

(1)

�

�x

0�

�x

�

a

�

(2)

is 
alled a 
ontravariant 4-ve
tor, written with an upper index. (Note the summa-

tion 
onvention above | every index repeated on the same side of an equation is to

be summed over, from 0 to 3.) Clearly x

�

is an example of a 
ontravariant 4-ve
tor.

There are also 
ovariant 4-ve
tors, written with a lower index, whi
h transform

a

ording to

a

�

�! a

0

�

=

�x

�

�x

0�

a

�

: (3)

An obvious example is the ve
tor operator �

�

= �=�x

�

.

The s
alar produ
t of a 
ovariant and a 
ontravariant 4-ve
tor

a

�

b

�

� a

0

b

0

+ a

1

b

1

+ a

2

b

2

+ a

3

b

3

; (4)

is Lorentz invariant:

a

0

�

b

0�

=

�x

�

�x

0�

�x

0�

�x

�

a

�

b

�

=

�x

�

�x

�

a

�

b

�

= Æ

�

�

a

�

b

�

= a

�

b

�

; (5)

where Æ

�

�

= 1 for � = �, 0 for � 6= �. But we know that s

2

= 


2

t

2

� x

2

� y

2

� z

2

is

Lorentz invariant. We 
an write this as s

2

= x

�

x

�

where

x

0

= 
t; x

1

= �x; x

2

= �y x

3

= �z : (6)

x

�

is a 
ovariant 4-ve
tor formed from the 
ontravariant 4-ve
tore x

�

by the operation

x

�

= g

��

x

�

(7)

where the metri
 tensor g

��

has all elements zero ex
ept the diagonal ones g

00

= 1,

g

11

= g

22

= g

33

= �1. Thus we 
an make a 
ovariant 4-ve
tor from any 
ontravariant

one (\lower an index") by multiplying by the matrix g

��

. Similarly, we 
an \raise an

index" with g

��

, whi
h has identi
al 
omponents to g

��

:

a

�

= g

��

a

�

: (8)

Note that

g

�

�

= g

��

g

��

= Æ

�

�

: (9)

Some important 4-ve
tors, in their 
ontravariant form, are
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� 4-momentum

p

�

= (E=
; p

x

; p

y

; p

z

) (10)

� 4-momentum operator

i�h�

�

= i�hg

��

�

�

= i�h

�

1




�

�t

;

��

�x

;

��

�y

;

��

�z

�

(11)

(note signs)

� 4-potential

A

�

= (V=
;A

x

; A

y

; A

z

) : (12)

Lorentz transformations are usually written

a

0�

= �

�

�

a

�

; �

�

�

=

�x

0�

�x

�

(13)

a

0

�

= �

�

�

a

�

; �

�

�

=

�x

�

�x

0�

: (14)

You 
an 
he
k that

�

�

�

= g

��

g

��

�

�

�

(15)

as expe
ted. Lorentz transformations have the important property

�

�

�

�

�

�

=

�x

�

�x

0�

�x

0�

�x

�

= Æ

�

�

: (16)

Hen
e

�

�

�

= (�

�1

)

�

�

: (17)

You 
an 
he
k this expli
itly for a pure velo
ity transformation along the x-axis:

�

�

�

=

0

B

B

B

�


 �
v=
 0 0

�
v=
 
 0 0

0 0 1 0

0 0 0 1

1

C

C

C

A

; 
 = (1� v

2

=


2

)

�

1

2

: (18)

(�

�1

)

�

�

is the same expe
t v ! �v.

We 
an write

�

�

�

= [exp(!K

x

)℄

�

�

(19)

(whi
h you 
an verify by expanding the exponential as a power series) where ! is the

rapidity,

! = tanh

�1

(v=
) ; (20)

and K

x

is the generator of velo
ity transformations (boosts) along the x-axis,

(K

x

)

�

�

=

0

B

B

B

�

0 �1 0 0

�1 0 0 0

0 0 0 0

0 0 0 0

1

C

C

C

A

: (21)
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For su

essive boosts in the same dire
tion

�

1

�

2

= exp(!

1

K

x

) exp(!

2

K

x

) = exp[(!

1

+ !

2

)K

x

℄ ; (22)

so ! is additive.

To write the Dira
 equation

i�h

�	

�t

= �m


2

	� i�h
~� �

~

r	 (23)

in \
ovariant" notation we multiply on the left by �=
 and rearrange terms to get

i�h


�

�

�

	�m
	 = 0 (24)

where




0

= � ; 


j

= ��

j

(j = 1; 2; 3) : (25)

If we need to use expli
it matri
es, we shall use those that follow from our 
hoi
e for �

and �

j

in the le
tures:




0

=

 

I 0

0 �I

!




j

=

 

0 �

j

��

j

0

!

(26)

where the \elements" are 2� 2 submatri
es, e. g. I =

 

1 0

0 1

!

.

The 
 matri
es have the property




�




�

+ 


�




�

= 2g

��

I (27)

where I represents a 4�4 unit matrix (often omitted). Note that 


�

is not a 4-ve
tor.

It is simply a set of four 
onstant matri
es, invariant under Lorentz transformations. 	

has 4 
omponents but it is neither an invariant nor a 4-ve
tor | it is 
alled a spinor

and has spe
ial Lorentz transformation properties, whi
h we shall not use in this 
ourse.

The Feynman slash notation is often used for brevity:

6a � 


�

a

�

= g

��




�

a

�

: (28)

Expli
itly

6a =

0

B

B

B

�

a

0

0 �a

3

�a

1

+ ia

2

0 a

0

�a

1

� ia

2

a

3

a

3

a

1

� ia

2

�a

0

0

a

1

+ ia

2

�a

3

0 �a

0

1

C

C

C

A

: (29)

The Dira
 equation is the

(i�h 6� �m
)	 = 0 ; (30)

i. e.

(6p�m
)	 = 0 : (31)

In pra
ti
e we shall usually set �h = 
 = 1.
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0.2 Transition Rates: Fermi's Golden Rule

Mu
h of parti
le physi
s is about the 
al
ulation of de
ay rates and s
attering 
ross

se
tions. These are derived from quantum me
hani
al transition rates. Let us start by

re
alling how transition rates are obtained in non{relativisti
 quantum me
hani
s.

Suppose we have a Hamiltonian H

0

with eigenstates �

n

(~r) normalized in some

volume element V :

H

0

�

n

= E

n

�

n

;

Z

V

�

�

m

�

n

d

3

r = Æ

mn

: (32)

Consider some perturbation H

0

:

(H

0

+H

0

)	 = i

�	

�t

(33)

(remember that �h = 
 = 1). We want to know the transition rate to some state �

f

given that we start (say, at t = �T=2) in some state �

i

. We write

�(x) =

X

n




n

(t)�

n

(~r) e

�iE

n

t

(34)

(x represents the 4-ve
tor (t; ~r)), where 


n

(�T=2) = Æ

ni

. We easily �nd

d


f

dt

= �i

X

n




n

(t)

Z

d

3

r �

�

f

H

0

�

n

e

i(E

f

�E

n

)t

(35)

' �i hf jH

0

jii e

i(E

f

�E

i

)t

(36)

(assuming that the perturbation is small), where

hf jH

0

jii �

Z

�

�

f

H

0

�

i

d

3

r : (37)

Hen
e




f

(t) ' �i

Z

t

�T=2

dt

0

hf jH

0

jii e

i(E

f

�E

i

)t

0

: (38)

The transition amplitude (in the far future, t = +T=2) is thus

A

fi

= 


f

(+T=2) = �i

Z

+T=2

�T=2

dt hf jH

0

jii e

i(E

f

�E

i

)t

: (39)

We 
an write in 
ovariant notation

lim

T!1

A

fi

= �i

Z

�

�

f

(x)H

0

�

i

(x) d

4

x (40)

where

�

n

(x) = �

n

(~r)e

�iE

n

t

: (41)

If H

0

is time-dependent we have a transition probability

lim

T!1

jA

fi

j

2

= jhf jH

0

jiij

2

Z

+T=2

�T=2

dt e

i(E

f

�E

i

)t

Z

+T=2

�T=2

dt

0

e

i(E

f

�E

i

)t

0

(42)

= 2� jhf jH

0

jiij

2

Æ(E

f

�E

i

)T : (43)
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Thus the transition rate is

�(i! f) = lim

T!1

jA

fi

j

2

T

= 2� jhf jH

0

jiij

2

Æ(E

f

�E

i

) : (44)

If we want to integrate over a number of possible �nal states with density �(E

f

) around

energy E

f

, we get

�(i! f) = lim

T!1

1

T

Z

jA

fi

j

2

�(E

f

) dE

f

(45)

= 2� jhf jH

0

jiij

2

�(E

i

) ; (46)

whi
h is Fermi's Golden Rule.

We 
an obtain the next 
orre
tion by su

essive substitution:

d


f

dt

' �i hf jH

0

jii e

i(E

f

�E

i

)t

(47)

+(�i)

2

X

n 6=i

hf jH

0

jni e

i(E

f

�E

n

)t

Z

t

�T=2

dt

0

hnjH

0

jii e

i(E

n

�E

i

)t

0

: (48)

Sin
e we are assuming the perturbation was not present at t = �T=2 but was 
onstant

after that, we should interpret

Z

t

�T=2

dt

0

hnjH

0

jii e

i(E

n

�E

i

)t

0

= hnjH

0

jii

e

i(E

n

�E

i

)t

i(E

n

�E

i

)

; (49)

so

d


f

dt

= �ie

i(E

f

�E

i

)t

2

4

hf jH

0

jii+

X

n 6=i

hf jH

0

jni hnjH

0

jii

E

i

�E

n

+ : : :

3

5

: (50)

Then Fermi's Golden Rule be
omes

�(i! f) = 2� jT

fi

j

2

�(E

i

) (51)

where

T

fi

= hf jH

0

jii+

X

n 6=i

hf jH

0

jni hnjH

0

jii

E

i

�E

n

+ : : : : (52)

Problem 1:

By further su

essive substitution, �nd the next (i. e. third{order) term in equation

(52).

0.3 Phase Spa
e

Consider now the transition rate for the general de
ay pro
ess a! 1 + 2+ 3+ : : :+ n.

There are (n� 1) independent momenta in the �nal state (be
ause ~p

1

+ : : :+ ~p

n

= ~p

a

)

and if all wavefun
tions are normalized to one parti
le per unit volume there is one per

5



volume h

3

of momentum spa
e, i. e. one per (2�)

3

volume sin
e �h = 1 implies h = 2�.

Therefore the total de
ay rate per initial parti
le is

� = 2�

Z

d

3

~p

1

(2�)

3

� � �

d

3

~p

n�1

(2�)

3

jT

fi

j

2

Æ

0

�

E

a

�

n

X

j=1

E

j

1

A

(53)

= (2�)

4�3n

Z

d

3

~p

1

: : : d

3

~p

n

jT

fi

j

2

Æ

3

�

~p

a

�

X

~p

j

�

Æ

�

E

a

�

X

E

j

�

: (54)

However, normalizing to one parti
le per unit volume is not a Lorentz invariant

pro
edure: it is only true in one frame sin
e volume elements are Lorentz 
ontra
ted

(the parti
le density in
reased by 
) in other frames. Now the density is the timelike


omponent of a 4-ve
tor, transforming like E, so a relativisti
 normalization should

be proportional to E parti
les per unit volume. The usual 
onvention is to normalize

to 2E parti
les per unit volume (the reason will appear shortly). The 
orresponding

invariant matrix element for a! 1 + 2 + : : :+ n is then

M

fi

= (2E

a

� 2E

1

� � � 2E

n

)

1=2

T

fi

; (55)

and

� =

(2�)

4�3n

2E

a

Z

d

3

~p

1

2E

1

: : :

d

3

~p

n

2E

n

jM

fi

j

2

Æ

3

�

~p

a

�

X

~p

j

�

Æ

�

E

a

�

X

E

j

�

: (56)

Now E

j

= (~p

2

j

+m

2

j

)

1=2

so inside the integral we 
an write

d

3

~p

j

2E

j

= d

3

~p

j

dE

j

Æ(p

�

j

p

j �

�m

2

j

) : (57)

This is Lorentz invariant so the integral is now frame{independent. � is proportional

to E

�1

a

due to the time{dilatation of lifetime: �

a

= �

�1

� E

a

. The integral in (56) is


alled a phase-spa
e integral.

We normalize to 2E parti
les be
ause of the simple relation (57), whi
h follows from

the useful general relation

Z

dE Æ[f(E)℄ = 1

,

�

�

�

�

df

dE

�

�

�

�

f(E)=0

: (58)

0.4 Two-body De
ay

Consider the de
ay a! b+ 
 in the rest{frame of a, where

p

�

a

= (E

a

; ~p

a

) = (m

a

; 0) : (59)

Equation (56) gives

� =

(2�)

�2

2m

a

Z

d

3

~p

b

2E

b

d

3

~p




2E




jM

fi

j

2

Æ

3

(~p

b

+ ~p




) Æ(m

a

�E

b

�E




) (60)

=

(2�)

�2

2m

a

Z

d

3

~p

b

4E

b

E




jM

fi

j

2

Æ(m

a

�E

b

�E




) : (61)
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We 
an write d

3

~p

b

= p

2

b

dp

b

sin � d�d�. Also

E

b

= (p

2

b

+m

2

b

)

1=2

; E




= (p

2

b

+m

2




)

1=2

(62)

sin
e ~p




= �~p

b

. Now

Z

dp

b

Æ

h

m

2

a

� (p

2

b

+m

2

b

)

1=2

� (p

2

b

+m

2




)

1=2

i

=

"

p

b

(p

2

b

+m

2

b

)

1=2

+

p

b

(p

2

b

+m

2




)

1=2

#

�1

=

E

b

E




m

a

p

b

; (63)

where we used eq. (58) with p

b

in the pla
e of E. Hen
e

� =

p

b

32�

2

m

2

a

Z

jM

fi

j

2

sin �d�d� : (64)

If jM

fi

j

2

is independent of the de
ay angles � and �, then it is just a number and

�(a! b+ 
) =

p

b

8�m

2

a

jM

fi

j

2

: (65)

Remember that p

b

here means the 3-momentum of b in the rest frame of a.

Problem 2:

Show that

p

b

= [(m

a

+m

b

+m




)(m

a

+m

b

�m




)(m

a

�m

b

+m




)(m

a

�m

b

�m




)℄

1=2

=(2m

a

) :

(66)

0.5 Two-body S
attering

We 
an also use Fermi's Golden Rule to 
al
ulate the transition rate for a s
attering

pro
ess su
h as a+ b! 
+ d. The invariant matrix element will again be normalized

to 2E parti
les per unit volume, so

M

fi

= (2E

a

� 2E

b

� 2E




� 2E

d

)

1=2

T

fi

; (67)

�(a+ b! 
+ d) =

(2�)

�2

2E

a

2E

b

Z

d

3

~p




2E




d

3

~p

d

2E

d

jM

fi

j

2

� (68)

�Æ

3

(~p

a

+ ~p

b

� ~p




� ~p

d

) Æ(E

a

+E

b

�E




�E

d

) :

The integral is invariant; we 
hoose to 
al
ulate it in the 
.m. frame, where ~p

a

= �~p

b

.

Then the integral is the same as for two{body de
ay, with

p

s = E+a+E

b

in the pla
e

of m

a

:

Integral =

p

�




4

p

s

Z

jM

fi

j

2

d


�

: (69)

From now on in 
ase of ambiguity we shall put a star on quantities de�ned in the 
.m.

frame; d


�

is the element of solid angle, d


�

= sin �

�

d�

�

d�

�

.
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We are interested in the 
ross se
tion � rather than the rate. It is de�ned in terms

of the following quantities in the lab (rest frame of b):

� = (Flux of a)� (Density of b)� � : (70)

Remember � is de�ned in terms of T

fi

, i. e. for unit density. Hen
e the 
ux of a is v

a

in the lab frame, i. e. p

a

=E

a

. Also E

b

= m

b

in the lab, so

�(ab! 
d) =

E

a

p

a

(2�)

�2

4E

a

m

b

p

�




4

p

s

Z

jM

fi

j

2

d


�

=

p

�




64�

2

p

a

m

b

p

s

Z

jM

fi

j

2

d


�

: (71)

Remember that p

a

is the 3-momentum of a in the lab while p

�




is that of 
 in the 
.m.

frame.

Problem 3:

Show that the lab and 
.m. 3-momenta of parti
le a are related by

p

a

m

b

= p

�

a

p

s : (72)

Using the results of problem 3 we may write the di�erential 
ross se
tion in the 
.m.

frame as

d�

d


�

(ab! 
d) =

1

64�

2

s

�

p

�




p

�

a

�

jM

fi

j

2

: (73)

The di�erential 
ross se
tion is also often expressed in terms of the invariant 4-

momentum transfer squared t (sometimes loosely referred to as just the momentum

transfer)

t � (p




� p

a

)

2

= m

2

a

+m

2




� 2p

a

� p




; (74)

where from now on p

a

et
. refer to 4-momenta, so that p

2

a

� p

a�

p

�

a

= m

2

a

, p

a

�p




� p

a�

p

�




et
.

In the 
.m. frame, 
hoosing the z axis along ~p

�

a

and ~p

�




in the x-z plane:

p

�

a

= (E

�

a

; 0; 0; p

�

a

) ; (75)

p

�




= (E

�




; p

�




sin �

�

; 0; p

�





os �

�

) ; (76)

so

p

a

� p




= E

�

a

E

�




� p

�

a

p

�





os �

�

(77)

and

dt = �2p

�

a

p

�




sin �

�

d�

�

: (78)

Assuming no �

�

dependen
e of jM

fi

j

2

, we 
an write d


�

= �2� sin �

�

d�

�

. Hen
e

d�

dt

(ab! 
d) =

1

64�s(p

�

a

)

2

jM

fi

j

2

: (79)
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In addition to s = (p

a

+ p

b

)

2

= (p




+ p

d

)

2

and t = (p




� p

a

)

2

= (p

b

� p

d

)

2

, another


ommonly{en
ountered invariant for the s
attering pro
ess a+ b! 
+ d is

u � (p

a

� p

d

)

2

= (p

b

� p




)

2

: (80)

The quantities s, t and u are 
alled the Mandelstam variables.

Problem 4:

Show that the three Mandelstam variables are not independent but satisfy the equation

s+ t+ u = m

2

a

+m

2

b

+m

2




+m

2

d

: (81)

0.6 Intera
tion via Parti
le Ex
hange

In parti
le physi
s we regard all for
es as arising from parti
le ex
hange (ex
hange of

quanta oof the intera
tion �eld). This is really just a way of looking at the terms in

the perturbation theory expansion. Consider the shift in energy of the state jii due to

the intera
tion term H

0

in the Hamiltonian:

�E

i

= hijH

0

jii+

X

j 6=i

hijH

0

jjihjjH

0

jii

E

i

�E

j

+ : : : : (82)

Suppose H

0


an 
ause emission or absorption of parti
les of rest{mass m. Bythis we

mean that if jii 
ontains a point sour
e of strength g at ~r = ~r

1

and jji 
ontains the sour
e

plus a parti
le of momentum

~

k(= �h

~

k), i. e. with wavefun
tion �(~r) = e

i

~

k�~r

(normalized

to one parti
le per unit volume), then the 
ontribution from parti
le emission to hjjH

0

jii

is

g

p

eE

k

Z

d

3

~r�

�

(~r)Æ

3

(~r � ~r

1

) =

g

p

eE

k

e

�i

~

k�~r

1

(83)

where E

k

= (

~

k

2

+m

2

)

1=2

. (N. B. g gives the invariant matrix element, normalized to

2E

k

parti
les per unit volume, so the normalization fa
tor must be devided out).

Similarly for absorption of the parti
le by a sour
e at ~r

2

we have a 
ontribution to

hijH

0

jji of

g

p

eE

k

e

+i

~

k�~r

2

. Therefore ex
hange of the parti
les from sour
e 1 to sour
e 2

gives a 
ontribution to �E

i

, via the se
ond term in the expansion (82), of

�E

1!2

i

=

g

X

j

g

2

2E

k

e

�i

~

k�(~r

2

�~r

1

)

E

i

�E

j

; (84)

whi
h 
an be represented by the diagram:

1

2

i ij

9



The intermediate state j 
onsists of the sour
es plus the parti
le, so E

j

= E

i

+E

k

.

Note that the a
tual produ
tion of this state would violate energy 
onservation. It is a

virtual state and the ex
hanged obje
t is a virtual pari
le. The diagram should not

be taken too literally. In only depi
ts a 
ontribution in the perturbation expansion.

The sum

f

P

represents a phase spa
e integration over all momenta

~

k of the ex-


hanged parti
le, with (as usual) one state per (2�)

3

of momentum spa
e. Therefore

�E

1!2

i

=

g

2

(2�)

3

Z

d

3

~

k

2E

k

e

i

~

k�(~r

2

�~r

1

)

�E

k

(85)

= �

g

2

2(2�)

3

Z

d

3

~

k

e

i

~

k�~r

~

k

2

+m

2

(~r � ~r

2

� ~r

1

) : (86)

To do the integral 
hoose the z axis along ~r. Then

~

k � ~r = kr 
os � and d

3

~

k be
omes

2�k

2

dk d(
os �), and the 
os � integration gives

�E

1!2

i

= �

g

2

2(2�)

3

Z

1

0

k

2

dk

k

2

+m

2

e

ikr

� e

�ikr

ikr

: (87)

Write this integral as one half of the integral from �1 to 1, whi
h 
an be done by

residues:

�E

1!2

i

=

�g

2

8�

e

�mr

r

: (88)

The 
ontribution from emission from sour
e 2 and absorption by 1 turns out to be the

same:

�E

2!1

i

=

�g

2

8�

e

�mr

r

: (89)

It is represented by the diagram

1

2

i ij

These diagrams are 
alled time-ordered (or old-fashioned) perturbation theory di-

agrams. The sum of all time orderings is represented by a Feynman diagram (or

graph):

+ =

10



Be
ause the intermediate state is virtual, the time ordering of emission and absorp-

tion is frame dependent, but the sum of all orderings (the Feynman graph) is frame

independent:

�E

i

=

�g

2

4�

e

�mr

r

: (90)

This is the Yukawa potential, due to single parti
le ex
hange. The exponential de-


rease has range R = m

�1

, i. e. R = �h=(m
), the Compton wavelength of the ex
hanged

parti
le. In ele
tromagnetism we have zero{mass photon ex
hange and hen
e \in�nite

range", R =1. In this 
ase the Yukawa formula (90) redu
es to the Coulomb potential.

0.7 S
attering via One-Parti
le Ex
hange

We 
an use the same method as for the Yukawa potential to �nd the di�erential 
ross

se
tion for the s
attering pro
ess a + b ! 
 + d via ex
hange of parti
le x. Instead of

potential energy of two point sour
es, we now want the invariant matrix element M

fi

where jii 
onsists of a and b with momenta ~p

a

and ~p

b

and jfi is 
 + d with momenta

~p




, ~p

d

.

Consider �rst the 
ontribution from the time ordering a! 
+ x, x+ b! d:

a

b

i j




d

x

f

The 
orresponding term in the perturbation expansion (52) of the non{invariant tran-

sition matrix element T

fi

is

T

fi

=

hf jH

0

jji hjjH

0

jii

E

i

�E

j

; (91)

i. e.

T

a!b

fi

=

hdjH

0

jx+ bi h
+ xjH

0

jai

(E

a

+E

b

)� (E




+E

x

+E

d

)

: (92)

Noti
e that the momentum of x is �xed by ~p

x

= ~p

a

� ~p




so there is no phase spa
e

integration. If the invariant matrix element for a! 
+ x is g

a

, we have as usual

h
+ xjH

0

jai =

g

a

(2E

a

2E

x

2E




)

1=2

: (93)

Similarly, de�ne

hdjH

0

jx+ bi =

g

b

(2E

b

� 2E

x

� 2E

d

)

1=2

: (94)

Then

M

fi

= (2E

a

� 2E

b

� 2E




� 2E

d

)

1=2

T

fi

; (95)
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giving

M

a!b

fi

=

1

2E

x

g

a

g

b

E

a

�E




�E

x

: (96)

For the other time ordering

a

b

i j




d

f

�x

the quantum numbers are su
h that the ex
hanged parti
le must be �x, the antiparti
le

of x. For example, for �pp ! �nn we 
ould have x = �

�

and then �x = �

+

. We assume


rossing symmetry

h
jH

0

ja+ �xi = h
+ xjH

0

jai ; et
. (97)

Then

M

b!a

fi

=

1

2E

�x

g

a

g

b

E

b

�E

d

�E

�x

: (98)

But ~p

�x

= ~p

b

� ~p

d

and ~p

a

+ ~p

b

= ~p




+ ~p

d

, so ~p

�x

= ~p




� ~p

a

= �~p

x

and

E

�x

= E

x

=

h

(~p

a

� ~p




)

2

+m

2

x

i

1=2

: (99)

The

M

fi

= M

a!b

fi

+M

a!b

fi

(100)

=

g

a

g

b

2E

x

�

1

E

a

�E




�E

x

+

1

E

b

�E

d

�E

x

�

(101)

=

g

a

g

b

2E

x

�

1

E

a

�E




�E

x

+

1

E

a

�E




+E

x

�

; (102)

sin
e E

a

+E

b

= E




+E

d

. Combining the two terms gives

M

fi

=

g

a

g

b

2E

x

2E

x

(E

a

�E




)

2

�E

2

x

(103)

=

g

a

g

b

(E

a

�E




)

2

� (~p

a

� ~p




)

2

�m

2

x

(104)

=

g

a

g

b

t�m

2

x

; (105)

where t is the 4-momentum transfer squared, (p

a

� p




)

2

, whi
h is negative for the

pro
esses we shall en
ounter, so no in�nity o

urs in the di�erential 
ross se
tion.

Using our previous result (79), we have

d�

dt

=

1

64�s(p

�

a

)

2

g

2

a

g

2

b

(t�m

2

x

)

2

; (106)

assuming that g

a;b

are real. The di�erential 
ross se
tion has a forward (t = 0) peak

with width of order m

2

x

, 
orresponding to the range of intera
tion m

�1

x

.
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0.8 Feynman Graphs

As in the 
al
ulation of the Yukawa potential, the sum of the time orderings, represented

by a single Feynman graph,

a

b

x

d




g

b

g

a

M

fi

=

g

a

g

b

(p

a

� p




)

2

�m

2

x

; (107)

has a simpler form than either individual term. For parti
les without spin, there is

a 
oupling 
onstant g

a;b

for ea
h vertex and a propagator (q

2

� m

2

)

�1

for ea
h

internal line of 4-momentum q

�

and mass (i. e. rest{mass) m. Noti
e that in Feynman

graphs (unlike the old{fashioned, time{ordered graphs) 4-momentum is 
onserved at

the verti
es but internal lines are not 
onstrained to have q

2

= m

2

as real parti
les

must. These lines represent both a virtual parti
le going one way and a virtual an-

tiparti
le going the other. They are said to be o� mass shell when q

2

6= m

2

be
ause

the surfa
e in 4-momentum spa
e des
ribed by q

�

q

�

= m

2

(on whi
h real parti
les lie)

is 
alled the mass shell.

Problem 5:

Using old{fashioned perturbation theory, verify that the invariant matrix element due

to the Feynman graph

b

a

g

1




d

x

g

2

is

M

fi

=

g

1

g

2

s�m

2

x

: (108)

(Hint: Don't forget to in
lude all time{orderings.)
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