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0.1 Notation for Relativity

Define coordinates 20 = ct, 2! = z, 22 = y, 2> = 2. Consider a homogeneous Lorentz
tranformation (2%, 2%, 22,2%) — (2, 2'", 22, 2"®). This means any combination of ve-
locity tranformations and rotations. A set of four quantities a* (u = 0,1,2,3) tran-

forming according to the rule

/ / / /
oz'* o, ox'* ,  Ox* 5 Ozt 4

!
at — d* = 8x0a+8x1a +8x2a +8x3a (1)
o't
= 550 (2)

is called a contravariant 4-vector, written with an upper index. (Note the summa-
tion convention above — every index repeated on the same side of an equation is to
be summed over, from 0 to 3.) Clearly z* is an example of a contravariant 4-vector.

There are also covariant 4-vectors, written with a lower index, which transform
according to

ox”
A
au — au = MGV . (3)
An obvious example is the vector operator 9, = 9/dz".
The scalar product of a covariant and a contravariant 4-vector
ab" = agh® + a1d' + azd? + asb®, (4)

is Lorentz invariant:
oz? Ox'* oxr”
A
= _a -
ox't 9z Y oz

where 65 = 1 for v = X, 0 for v # X. But we know that 2 =2 — 2?2 —y? - 22 is
Lorentz invariant. We can write this as s?

a, b = 0{a, b = a,b”, (5)

Iyl
a#b =

= z,x" where
To=ct, T =—I, To=—Y T3= —2. (6)
x, is a covariant 4-vector formed from the contravariant 4-vectore z# by the operation
Ty = Gz’ (7)

where the metric tensor g,, has all elements zero except the diagonal ones ggg = 1,
gi1 = goo = g33 = —1. Thus we can make a covariant 4-vector from any contravariant
one (“lower an index”) by multiplying by the matrix g,,. Similarly, we can “raise an
index” with g"”, which has identical components to g, :

a, = gua’ . (8)

Note that
9"y = g" gy, = k. (9)

Some important 4-vectors, in their contravariant form, are



e 4-momentum
p! = (E/c,pz,py,p2) (10)

e 4-momentum operator

(11)

1 -0 -6 —
ih@“zihg“’j@yzih< 0 -0 -9 8)

cot’ 9z’ dy’ 9z
(note signs)

e 4-potential
At = (V/e, Ay, Ay, Ay) . (12)

Lorentz transformations are usually written

oz’

O R (13)
ox¥
aL = AJay; A = T (14)
You can check that
AMV = guAgUUA/\J (15)
as expected. Lorentz transformations have the important property
ox” ox'M
VAR — . SV
AJYARy = D o oy . (16)
Hence
Ay = (ATHY,. (17)
You can check this explicitly for a pure velocity transformation along the z-axis:
v —yv/e 0 0
po_ | —v/e 0 00 (1 .22k
A 14 0 0 1 0 ) fy (]' v /C ) z. (]‘8)
0 0 0 1
(A~1)#, is the same expect v — —uv.
We can write
A, = [exp(wK )"y (19)

(which you can verify by expanding the exponential as a power series) where w is the
rapidity,

w = tanh™"(v/c), (20)
and K, is the generator of velocity transformations (boosts) along the z-axis,
0 =100
-1 0 00
po—
0 0 0O



For successive boosts in the same direction
A1 Ay = exp(wi Ky ) exp(we Ky) = exp[(w1 + we) K], (22)

so w is additive.
To write the Dirac equation

L4
in v

= BmcU — ihed - VU (23)

in “covariant” notation we multiply on the left by /¢ and rearrange terms to get
ihy" 0, ¥ —me¥ =0 (24)
where

70:/87 FYj:/Baj (j:17273) (25)

If we need to use explicit matrices, we shall use those that follow from our choice for S
and «; in the lectures:

pe(n) v (57)

where the “elements” are 2 X 2 submatrices, e.g. I = ( [1) (1) ) .

The v matrices have the property
YA+t =2¢"T (27)

where I represents a 4 X 4 unit matrix (often omitted). Note that v* is not a 4-vector.

Tt is simply a set of four constant matrices, invariant under Lorentz transformations. ¥

has 4 components but it is neither an invariant nor a 4-vector — it is called a spinor

and has special Lorentz transformation properties, which we shall not use in this course.
The Feynman slash notation is often used for brevity:

d=v"a, = guy'a . (28)
Explicitly
al 0 —a? —a' +ia®
0 al —a' —ia? a’
d= o3 al —ia2 —a° 0 (29)
a' + ia? —a? 0 —a
The Dirac equation is the
(th @ —me)¥ =0, (30)
il.e.
(§—me)¥ =0. (31)

In practice we shall usually set i = c = 1.



0.2 Transition Rates: Fermi’s Golden Rule

Much of particle physics is about the calculation of decay rates and scattering cross
sections. These are derived from quantum mechanical transition rates. Let us start by
recalling how transition rates are obtained in non-relativistic quantum mechanics.

Suppose we have a Hamiltonian H, with eigenstates ¢, (7) normalized in some
volume element V:

H0¢n = En¢n ) /V ¢;kn¢nd3'r = 6mn . (32)
Consider some perturbation H':
OV

(remember that i = ¢ = 1). We want to know the transition rate to some state ¢
given that we start (say, at t = —T/2) in some state ¢;. We write

ch OrGras: (34)

(z represents the 4-vector (¢,7)), where ¢, (—=T'/2) = dpn;. We easily find

dey : 3,. 1% i(Ej—En)t
— = —zznjcn(t)/d r G H' ¢y, e Fr—En) (35)
~ i (f|H|i) ! PrmFot (36)
(assuming that the perturbation is small), where
(f|H"|4) /¢fH,¢z d*r. (37)
Hence ;
of(t) = —i / di' (f|H')i) e/ Fr B (38)
-T/2
The transition amplitude (in the far future, ¢ = +77/2) is thus
+T/2 .
Ap = c;(+T/2) = —i/ dt (f|H'|i) ! Fr=Fot (39)
—T/2
We can write in covariant notation
lim Ap = —i / b () H' () d*o (40)
T—o0
where .
() = ¢ (Fle” " (41)
If H' is time-dependent we have a transition probability
+T/2 . )
lim |Agnl2 = [(fIH']i))? / dt e'Pr =it / dt e (Fr=Fit (42)
T—o0 T/2
= 2n|(f|H'li)” (Ef ~E)T. (43)
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Thus the transition rate is

Ail? .
Dii - £) = Jim BEE o110y 5(8; - ) (44)

If we want to integrate over a number of possible final states with density p(E) around
energy Ey, we get

i) = Jim = [1AgPo(mp) dn; (45)
— 2 [(fH) plEy) (46)

which is Fermi’s Golden Rule.
We can obtain the next correction by successive substitution:

d .
L~ i (f|H|i) BBt (47)
dt
t - ’
P A H ) B [l P ()
i —T/2
Since we are assuming the perturbation was not present at ¢ = —7'/2 but was constant

after that, we should interpret

[ at i s = gy S (49)
~T/2 (B, — E;)’
SO
de _ o , (F1H'|n) (n] H'li)
=7 i
y [f|H Z E—E. +...] . (50)
n#i
Then Fermi’s Golden Rule becomes
T(i — f) =2 |Ty|? p(E;) (51)
where (1) ()
7 n) (n
= (fIH'liy + BB, +.... (52)
n#i
Problem 1:

By further successive substitution, find the next (i.e. third-order) term in equation
(52).

0.3 Phase Space

Consider now the transition rate for the general decay processa —+ 14+2+3+ ...+ n.
There are (n — 1) independent momenta in the final state (because py + ... + Py = pa)
and if all wavefunctions are normalized to one particle per unit volume there is one per



volume h? of momentum space, i.e. one per (2m)? volume since i = 1 implies h = 27.
Therefore the total decay rate per initial particle is

By dBp, n
r = 2/ LU (p)1|TfZ|5( ZEj) (53)

- (27r)4_3"/d313’1...d3ﬁn (732 0% (o= > 55) 0 (B = Y By) . (54)

However, normalizing to one particle per unit volume is not a Lorentz invariant
procedure: it is only true in one frame since volume elements are Lorentz contracted
(the particle density increased by 7y) in other frames. Now the density is the timelike
component of a 4-vector, transforming like F, so a relativistic normalization should
be proportional to E particles per unit volume. The usual convention is to normalize
to 2F particles per unit volume (the reason will appear shortly). The corresponding
invariant matrix element for a - 142 + ... + n is then

My; = (2B, - 2B, - 2E,)'/*Ty; (55)

and

2 4—-3n d3-' d
F:(Z)Ea 2511.. p"|M 20 (= YF) 6 (Ba— 3 B5) . (56)

Now Ej = (p7 +m} )1/2 so inside the integral we can write

PO _ B aB: s — m2 57
OF; =a'pjalLy; (pjpju m3). (57)

This is Lorentz invariant so the integral is now frame-independent. I' is proportional
to E, ! due to the time-dilatation of lifetime: 7, = T ™! ~ E,. The integral in (56) is
called a phase-space integral.

We normalize to 2F particles because of the simple relation (57), which follows from
the useful general relation

[amilpE) =1 / ‘% e (58)

0.4 Two-body Decay
Consider the decay a — b + ¢ in the rest—frame of a, where
Py = (Ea,Pa) = (Ma,0) . (59)
Equation (56) gives
(2m) 2 [ dPpy P

r = Myi|* 8*(py + p) 6(mq — B, — E,
= Me|?6(mg — Ey — E) . 61
2ma 4:EbEc | fl| ( a b C) ( )



We can write dpj, = pj dp, sinf dfd$. Also

Ey = (p} +mi)"?,  Be=(pj +m)"? (62)
since p. = —pp. Now
-1
2 (2 N1/2 .2 2y1/2]  _ Py Pb
/dpb5 [ma (P + i) (py +me) ] (0% + m3)1/? + (p? + m2)1/2
E,E
= =, (63)
MaPh
where we used eq. (58) with p;, in the place of E. Hence
r=_"20 / | M ;| sin0d0ddp. (64)
32m2m2
If |M fi|2 is independent of the decay angles # and ¢, then it is just a number and
T(a = b+c) = —20 | M2 (65)
8mwm2

a

Remember that p, here means the 3-momentum of b in the rest frame of a.

Problem 2:
Show that

pp = [(ma + mp + me)(mg + my — me)(mg — mp + me)(mg —my, — mc)]l/2 /(2my) .
(66)

0.5 Two-body Scattering

We can also use Fermi’s Golden Rule to calculate the transition rate for a scattering
process such as a + b — ¢+ d. The invariant matrix element will again be normalized
to 2F particles per unit volume, so

My = (2E,-2Ey-2E.-2Ey)'*Ty;, (67)

2m) 2 [ dP.d*py 2

r b d) = My;
(atb=erd) = 5pon | 38, 25, Ml X (68)

><53(1511 +ﬁb _ﬁc _ﬁd) 6(Ea +Eb - Ec - Ed)-

The integral is invariant; we choose to calculate it in the c. m. frame, where p, = —pp.
Then the integral is the same as for two-body decay, with /s = E+a+ F} in the place
of my:

Integral = 47\’;5 / | M ;|2 A (69)

From now on in case of ambiguity we shall put a star on quantities defined in the c. m.
frame; dQ2* is the element of solid angle, dQ* = sin 8*d0*d¢*.



We are interested in the cross section o rather than the rate. It is defined in terms
of the following quantities in the lab (rest frame of b):

I' = (Flux of a) x (Density of b) x o. (70)

Remember I is defined in terms of T';, i.e. for unit density. Hence the flux of a is v,
in the lab frame, i.e. p,/E,. Also E, = my in the lab, so

E, (2m)~2 9
b—ed) = My;|? dQ*
o(ab — cd) pa4Emb4\/_/| il
= ——C¢—— | |Mpy|>dQ*. 1
st | 1M (71)

Remember that p, is the 3-momentum of a in the lab while pj is that of ¢ in the c. m.
frame.

Problem 3:
Show that the lab and c¢. m. 3-momenta of particle a are related by

Pamy = Pay/S . (72)

Using the results of problem 3 we may write the differential cross section in the ¢. m.
frame as

do 1 P
s (ab = ¢d) = =y (p—z> |Mp;|%. (73)

The differential cross section is also often expressed in terms of the invariant 4-
momentum transfer squared ¢ (sometimes loosely referred to as just the momentum
transfer)

t = (pe — pa)? = mj +mZ = 2p - pe, (74)
where from now on p, etc. refer to 4-momenta, so that p2 = DapPh = m2, pgpe = DapD¥
etc.

In the c. m. frame, choosing the z axis along p; and p; in the z-z plane:

pZL = (E:{, 0, 0,]):) ) (75)
pe = (EZ,pesind”,0,p;cosf), (76)
0
Pa-pe = E;EY — piphcos0* (77)
and
dt = —2p;p;sinf*do* . (78)
Assuming no ¢* dependence of |My;|?, we can write dQ* = —27 sin0*d6*. Hence
do 1
—(ab d) = —— |Mgl~. 79
dt(a = od) = 64ms(pk )2| sl? (79)
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In addition to s = (pa + pp)? = (pe + pg)? and t = (p. — pa)? = (pp — pq)?, another
commonly—encountered invariant for the scattering process a +b — ¢+ d is
u = (pa—pa)® = (pb —pe)? - (80)

The quantities s, t and u are called the Mandelstam variables.

Problem 4:
Show that the three Mandelstam variables are not independent but satisfy the equation

s+t+u=m2+mi+m?+mj. (81)

0.6 Interaction via Particle Exchange

In particle physics we regard all forces as arising from particle exchange (exchange of

quanta oof the interaction field). This is really just a way of looking at the terms in

the perturbation theory expansion. Consider the shift in energy of the state |i) due to

the interaction term H' in the Hamiltonian:

(i H'|7) (3| H'|3)
E;, - E;

AE; = (i|H'|i) +Z
J7i

(82)

Suppose H' can cause emission or absorption of particles of rest-mass m. Bythis we
mean that if |7) contains a point source of strength g at ¥ = 7 and |j) contains the source
plus a particle of momentum k(= hk), i.e. with wavefunction ¢(7) = etk T (normalized
to one particle per unit volume), then the contribution from particle emission to (j|H'|7)

is

— — g —ik-T
dBFY* (F)03 (F — 7)) = e T 83
where By = (k2 +m?2)/2. (N.B. g gives the invariant matrix element, normalized to
2E), particles per unit volume, so the normalization factor must be devided out).
Similarly for absorption of the particle by a source at 7 we have a contribution to

eE

(i|H'|j) of \/7 etk Therefore exchange of the particles from source 1 to source 2
gives a contribution to AFj;, via the second term in the expansion (82), of

Aplo? N~ g e R
i 2B, BB

(84)

which can be represented by the diagram:

1 J 1



The intermediate state j consists of the sources plus the particle, so E; = E; + E.
Note that the actual production of this state would violate energy conservation. It is a
virtual state and the exchanged object is a virtual paricle. The diagram should not
be taken too literally. In only depicts a contribution in the perturbation expansion.

The sum Y represents a phase space integration over all momenta k of the ex-
changed particle, with (as usual) one state per (27)% of momentum space. Therefore

- ~

92 dSE ezE( 2—T1)

AE7? =
i (2r)3 ) 2B, —Ey (85)
2 ik
g 37 € - .
= — A’k — =79 — .
o | M (=R 0

To do the integral choose the z axis along 7. Then k-7 = krcos@ and d3k becomes
21k? dk d(cos 0), and the cos f integration gives

gQ 00 dek eikr _ e—ikr

AE}7? = —
! 2(2m)3 Jo k% +m? ikr

(87)

Write this integral as one half of the integral from —oo to oo, which can be done by
residues: S
AE!>?2 = 9 ¢
’ 8t 1

(88)

The contribution from emission from source 2 and absorption by 1 turns out to be the
same:

2 ,—mr
AE? = = 89
' 8t 1 (89)
It is represented by the diagram

| | |

I I I

1 + + +

I I I

| | |

I I

| | |

2 | | |

| | |

I I I

i J i

These diagrams are called time-ordered (or old-fashioned) perturbation theory di-
agrams. The sum of all time orderings is represented by a Feynman diagram (or

graph):




Because the intermediate state is virtual, the time ordering of emission and absorp-
tion is frame dependent, but the sum of all orderings (the Feynman graph) is frame
independent:

_92 e~ mr

AE; = (90)

dr  r
This is the Yukawa potential, due to single particle exchange. The exponential de-
crease has range R = m !, i.e. R = li/(mc), the Compton wavelength of the exchanged
particle. In electromagnetism we have zero-mass photon exchange and hence “infinite
range”, R = 0o. In this case the Yukawa formula (90) reduces to the Coulomb potential.

0.7 Scattering via One-Particle Exchange

We can use the same method as for the Yukawa potential to find the differential cross
section for the scattering process a + b — ¢ + d via exchange of particle x. Instead of
potential energy of two point sources, we now want the invariant matrix element My;
where |i) consists of ¢ and b with momenta p, and p, and |f) is ¢ + d with momenta
ﬁca ﬁd-

Consider first the contribution from the time ordering a« — ¢+ z, £ + b — d:

|
T |

|

|
| |
1 1
| |
| |

i J f

The corresponding term in the perturbation expansion (52) of the non—invariant tran-
sition matrix element T'; is

(f1H'|5) (G| H'|i)
Ei—E;

Ty = (91)

i.e.
d|H'|z + b) (c + z|H'|a)
Taﬁb _ ( . 2
fi (B + Ey) — (E. + E, + Ey) (92)

Notice that the momentum of z is fixed by p, = P, — P so there is no phase space
integration. If the invariant matrix element for a — ¢+ z is g,, we have as usual

H'|a) = Ja : 03
(c+ z|H'|a) 2E, 28, 251 (93)

Similarly, define
(d|H'|z + b) = L (94)

(2Ey - 2B, - 2E4)Y/2 "
Then
Mj; = (2E, - 2E, - 2E, - 2E,)"/*Ty; | (95)
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giving
1 9a9b
M = a . 96
: 2F, E, — E.— E, (96)

For the other time ordering

I I
| |
I I
| |
1 1
| |
I I
i J f
the quantum numbers are such that the exchanged particle must be Z, the antiparticle

of z. For example, for pp — nn we could have z = 7~ and then Z = 7. We assume
crossing symmetry

(c|H'|a + Z) = {c + z|H'|a), etc. (97)
Then

1 Ga9b
Mbe — i 98
L 2FE; E, — E; — E: (98)

But ﬁi :ﬁb_ﬁd andﬁa +ﬁb :ﬁc +ﬁda SO ﬁi :ﬁc_ﬁa = _ﬁx and

S 5 1/2
By = B, = (s - 5o) +m2] . (99)
The
My = M7+ M (100)
1 1
—  Ya9 < + ) (101)
2B, \E,— E.—E, E,—E;—FE,
Ga9b 1 1 >
_ 102
2F, <Ea—EC—EI+Ea—EC+EI ’ (102)
since F, + Fy = E. + FE;. Combining the two terms gives
Ga9b 2E,
My = 103
fi 2E, (Eq — E.)? — E2 (103)
dagb
= = " 104
(Ea - Ec)2 - (pa - pc)2 - m% ( )
Gab
105
t—m2’ (105)

where t is the 4-momentum transfer squared, (p, — p.)?, which is negative for the
processes we shall encounter, so no infinity occurs in the differential cross section.
Using our previous result (79), we have

do 1 9a9;
dt — 64ns(pt)? (t —m2)2’

assuming that g,j are real. The differential cross section has a forward (¢t = 0) peak

with width of order m2, corresponding to the range of interaction m,!.

(106)
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0.8 Feynman Graphs

As in the calculation of the Yukawa potential, the sum of the time orderings, represented
by a single Feynman graph,

Ja

T My; = (107)

gb

has a simpler form than either individual term. For particles without spin, there is
a coupling constant g,; for each vertex and a propagator (¢> — m?)~! for each
internal line of 4-momentum ¢* and mass (i.e. rest—mass) m. Notice that in Feynman
graphs (unlike the old-fashioned, time-ordered graphs) 4-momentum is conserved at
the vertices but internal lines are not constrained to have ¢> = m? as real particles
must. These lines represent both a virtual particle going one way and a virtual an-
tiparticle going the other. They are said to be off mass shell when ¢? # m? because
the surface in 4-momentum space described by ¢*q, = m? (on which real particles lie)
is called the mass shell.

Problem 5:
Using old—fashioned perturbation theory, verify that the invariant matrix element due
to the Feynman graph

a c
T
g1 g2
b d
is 91

192
M = . 108
fi s — m2 ( )

x

(Hint: Don’t forget to include all time-orderings.)
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