

Cryostats with 1-K-Pot

SS 2022

MVCMP-1

⁴He $L = 90 \text{ J mol}^{-1}$ ³He $L = 40 \text{ J mol}^{-1}$

Vapor pressure curve of various cryogenic liquids

Clausius-Clapeyron equation

vapor pressure curve

11.1 Bath Cryostats

³He cryostats

cooling power $\dot{Q} = \dot{n}_{
m g} \, L \propto p \propto {
m e}^{-L/RT}$

Cooling power of a ³He cryostat with charcoal absorption pump

History

- 1951 basic idea suggested by Heinz London
- 1962 detailed concept worked out by London, Clark, Mendoza
- 1965 first realization Das, De Bruyn Ouboter, Taconis $T_{min} = 220 \text{ mK}$
- 1999 lowest temperature obtained , J.C. Cousins *et al.* $T_{min} = 1.75$ mK

Heinz London

occurrence of miscibility gap

but 6.5 % ³He in ⁴He at T = 0 K

reason:

zero-point motion weakens binding

but: Fermi energy

max. 6.5% ³He in ⁴He at T = 0 K

principal of cooling by mixing ³He/⁴He

- transition of ³He into the ⁴He rich phase
- cooling by "evaporation" of ³He into ⁴He quasi vacuum

heat of solubility per Mol:

$$\Delta Q = T\Delta S = aT^2$$

$$a = -84 \,\mathrm{J/K^2}$$

Realisation of ³He/⁴He cooling cycle

SS 2022

MVCMP-1

Kapitza Resistance – thermal boundary resistance

Snell's law of refraction

$$\frac{\sin \alpha_\ell}{\sin \alpha_{\rm s}} = \frac{v_\ell}{v_{\rm s}}$$

critical angle of total reflection $\alpha_{\ell}^{c} = \arcsin\left(\frac{v_{\ell}}{v_{s}}\right)$

for liquid helium and copper $~~ lpha_\ell^{
m c} pprox 4^\circ$

fraction of phonons incident within critical angle

$$f = \frac{1}{2}\sin^2 \alpha_{\ell}^{\rm c} = \frac{1}{2} \left(\frac{v_{\ell}}{v_{\rm s}}\right)^2 < 10^{-2}$$

transmission coefficient

 $t = \frac{4Z_{\ell}Z_{\rm s}}{\left(Z_{\ell} + Z_{\rm s}\right)^2} \approx \frac{4Z_{\ell}}{Z_{\rm s}} = \frac{4\varrho_{\ell}v_{\ell}}{\varrho_{\rm s}v_{\rm s}}$ $\overbrace{Z_{\ell} = \varrho_{\ell}v_{\ell}} \sum Z_{\rm s} = \varrho_{\rm s}v_{\rm s} \quad \text{acoustic impedances}$

fraction of phonons crossing the interface

$$ft=rac{2arrho_\ell v_\ell^3}{arrho_{
m s} v_{
m s}^3}$$

- Kaptiza resistance occurs at any solidsolid, liquid-solid interface
- particular problematic for liquid helium because of the low sound velocity
- helium-copper $ft < 10^{-5}$

silver sinter SEM image

Kapitza resistance between pure ³He and ³He/⁴He mixtures and silver sinters of different grain sizes

- ▶ $20 \,\mathrm{mK} < T < 100 \,\mathrm{mK}$ good agreement with Debye model $R_{\mathrm{K}} \propto T^{-3}$
- \blacktriangleright below 20 mK $R_{
 m K} \propto T^{-2}$ or $R_{
 m K} \propto T^{-1}$
 - → anomalous Kapitza resistance
 - origin: TLS, coupling to zero and second sound modes, phonon wavelength larger than sinter grains

heat flow from liquid to solid (using Debye model)

$$\dot{\mathcal{Q}} = \frac{1}{2} ftuv_{\ell} A = \frac{\pi^2 k_{\rm B}^4 \varrho_{\ell} v_{\ell}}{30\hbar^3 \varrho_{\rm s} v_{\rm s}^3} A T^4$$
$$\bigvee_{u = U/V = \pi^2 k_{\rm B}^4 T^4 / (30\hbar^3 v_{\ell}^3)$$

in equilibrium identical heat flow from solid to liquid

net flow in non-equilibrium (ΔT)

$$\dot{Q} = \frac{\mathrm{d}\dot{Q}}{\mathrm{d}T} \Delta T = \frac{2\pi^2 k_{\mathrm{B}}^4 \varrho_\ell v_\ell}{15\hbar^3 \varrho_{\mathrm{s}} v_{\mathrm{s}}^3} A T^3 \Delta T$$

Kapitza resistance

$$R_{\rm K} = \frac{A\Delta T}{\dot{Q}} = \frac{15\hbar^{3}\varrho_{\rm s}v_{\rm s}^{3}}{2\pi^{2}k_{\rm B}{}^{4}\varrho_{\ell}v_{\ell}} \frac{1}{T^{3}}$$

Cooling power

assuming 100% ³He circulation one finds in equilibrium:

$$\dot{Q}_{\rm mc} + \dot{N}_3 \left[H_3(T_{\rm ex}) - H_3(T_{\rm mc}) \right] = \dot{N}_3 \left[H_{3,\rm d}(T_{\rm mc}) - H_3(T_{\rm mc}) \right]$$

enthalpy

$$H = U + pV$$

circulation rate

enthalpy of ³He-dilute phase enthalpy of ³He-rich phase r

mixing chamber temperature

heat leak and/or available cooling power

temperature after last heat exchanger

inserting the enthalpies

$$\dot{Q}_{\rm mc} = \dot{N}_3 \left[H_{3,\rm d}(T_{\rm mc}) - H_3(T_{\rm ex}) \right]$$
$$= \dot{N}_3 \left(95 \, T_{\rm mc}^2 - 11 \, T_{\rm ex}^2 \right) \, \left(\frac{\rm J}{\rm mol \ K^2} \right)$$

Temperature and circulation rate dependence of the cooling power

limiting case of vanishing cooling power: $\dot{Q}_{
m mc}=0$

$$95 T_{\rm mc}^2 - 11 T_{\rm ex}^2 = 0$$

$$\frac{T_{\rm ex}}{T_{\rm mc}} = 2.8$$

this underlines the importance of the heat exchanger quality

 \blacktriangleright for $\dot{Q}\gg\dot{Q}_{
m heat\ leak}$ \longrightarrow $\dot{Q}\propto T^2$, $\dot{Q}\propto\dot{N}_3$

heat leak determines lowest temperature

circulation rate

SS 2022 MVCMP-1

11.2 Dilution Refrigerators

Minimum temperature

- there is no principle limit ... it is determined by the heat leak!
- unavoidable heat leak: viscous friction of ³He

pressure difference along the heat exchanger:

 $\Delta p = G \eta \dot{V} \qquad \mbox{Hagen-Poiseuille law} \\ \hline G = 8L/(\pi r^4) \label{eq:deltapprox}$

heat leak due to viscous friction

$$\dot{Q}_{
m visc} = \dot{V}\Delta p = G\eta\dot{V}^2$$

single shot minimum temperature

$$T_{\rm min.} = \frac{4}{\sqrt[3]{d}} \,\mathrm{mK}(\mathrm{mm})^{1/3}$$

pulse tube

SS 2022 MVCMP-1

heat

exchanger

mixing chamber

.k.slets

commercial dry system with rf wiring OFFIC

Cuore Cryostat

SS 2022 MVCMP-1_

4

1926 basic idea suggested by Debye, 1927 Giauque

1933 first realization by two groups Leiden, Berkeley

electronic spins

nuclear spin, Gorter 1934, Kurti and Simon 1935

General cooling principle

SS 2022

MVCMP-1

11.3 Adiabatic Demagnetization Refrigerators

SS 2022

MVCMP-1

a) Electronic spins

SS 2022

MVCMP-1

entropy of different paramagnetic salts

MAS for $MnSO_4 \cdot (NH_4)_2SO_4 \cdot 6H_2O$ FAA for $Fe_2(SO_4)_3 \cdot (NH_4)_2SO_4 \cdot 24H_2O$ CPA for $Cr_2(SO_4)_3 \cdot K_2SO_4 \cdot 24H_2O$ CMN for $2Ce(NO_3)_3 \cdot 3Mg(NO_3)_2 \cdot 24H_2O$

problems with paramagnetic salts

- T_c relatively high
- Iow thermal conductivity

SS 2022 MVCMP-1

high conductive wires to improve low thermal conductivity of salt pills

NASA GSFC

- FAA salt pill for space application
- 15.000 gold wires
- salt pill grown around the wires

b) Nuclear spins

SS 2022

MVCMP-1

- metals with fast relaxation time
- nuclei with large magnetic moment
- isotopes with large natural abundance
- cubic structure to avoid quadropole contributions
- no superconductor
- pure material, easy to machine

dT_n^{-1}	$(T_{\rm n}^{-1} - T_{\rm e}^{-1})$		
dt	$ au_1$		

 $\sim au = \kappa/T_{
m e}$ Korringa relation

	Structure	Ι	$\mu/\mu_{ m N}$	$\kappa (\mathrm{Ks})$	Abundance (%)
⁶³ Cu	fcc	3/2	2.22	1.27	69.1
⁶⁵ Cu	\mathbf{fcc}	3/2	2.38	1.09	30.9
¹⁹⁵ Pt	fcc	1/2	0.597	0.03	<mark>33.</mark> 8
$\frac{141}{\text{PrNi}_5}$	fcc	5/2	4.28	< 0.001	100

van Vleck paramagnet

11.3 Adiabatic Demagnetization Refrigerators

Gas gap heat switch

SS 2022

MVCMP-1

exchange gas

 \rightarrow pumping to open switch

- ⁴He: superfluid layer \rightarrow creep
- H₂: ortho-para conversion

³He: no exothermic reaction no creep high vapor pressure

ideal exchange gas

Mechanical heat switch

- large force needed ~ 100 N
- closed: mW/K ... 1 W/K @ 15K
- problem: heating on opening

- only good well below T_c
- open means low conductivity
- problems: eddy currents flux trapping

Performance of superconducting heat switch

SS 2022

MVCMP-1

- switching ratio 10⁶ at 10 mK
- heat leak in open state 10 pW

11.3 Adiabatic Demagnetization Refrigerators

Heat leaks

<u>SS</u> 2022

MVCMP-1

- eddy current heating
- $\dot{Q}_{
 m eddy} = f rac{V \dot{B}^2}{arrho}$

time dependent

heat leaks

- em fields and vibrations
- ortho-para conversion
- radioactive impurities

tunneling systems

atomic tunneling systems

$$\dot{Q} = \frac{\pi^2 k_{\rm B}^2}{24} P_0 \left(T_1^2 - T_0^2\right) \frac{1}{t}$$

Time t / h

specific heat of H₂

SS 2022

MVCMP-1

Cooling process

SS 2022

MVCMP-1

• precooling to T_A and isothermal magnetization

nuclear Curie constant
$$\lambda_{n} = \frac{nI(I+1)\mu_{0}\mu_{n}^{2}g_{n}^{2}}{3k_{B}}$$

 $Q = nT_{A}\Delta S = -\frac{\lambda_{n}B_{i}^{2}}{2\mu_{0}T_{A}}$

reducing B in steps to optimal final field

$$B_{\rm f,opt} = \sqrt{\frac{3k_{\rm B}\kappa \dot{Q}}{ng_{\rm n}^2 I(I+1)\mu_{\rm n}^2}} ~~{\rm heat~leak}$$

11.3 Adiabatic Demagnetization Refrigerators

heat switch

SS 2022

MVCMP-1

Cu stage

heat switch

Pt stage

11.3 Adiabatic Demagnetization Refrigerators

Fixed Point Device (including Rh)

SS 2022

MVCMP-1

¹⁹⁵Pt-NMR-Thermometer I

¹⁹⁵Pt-NMR – Thermometer II (isotopically enriched ¹⁹⁵Pt)

Platinum stage

Lowest temperature at Pt stage

 $T_{\rm min} = 800 \ {\rm nK}$

12. Thermometry at Low Temperature

Primary thermometers Superconducting fixpoints Current/flux noise ¹⁹⁵Pt NMR Coulomb blockade Nuclear orientation ³He melting curve

SS 2022

MVCMP-1

Secondary thermometers Resistance Capacitance Magnetic susceptibility

. . . .

4

Temperature is a thermodynamic property of state

It can be defined by a reversible cycle, like a carnot cycle

 $\oint T^{-1} \mathrm{d}Q = 0$

primary thermometers: can be used without any prior calibration

secondary thermometers: must be calibrated against an other thermometer

distinction is often somewhat arbitrary ...

not practical

Temperature scales

SS 2022

MVCMP-1

defined by Comité International des Poids et Messures

based on fixpoints like the triple point of water and interpolation like Pt-100 resistance thermometry or gas thermometry

ITS-90 0.65 K to 1358 K

PLTS-2000 0.9 mK to 1358 K

Thermometer types and ranges

