

direct and exchange processes together

$$t^{(2)} = \sum_{\mathbf{k}^{\prime\prime},\,\sigma} \frac{1}{E(\mathbf{k}) - E(\mathbf{k}^{\prime\prime})} \left[(1 - f_{\mathbf{k}^{\prime\prime}}) \langle \mathbf{k}^{\prime} \uparrow | \mathcal{H}_{sd} | \mathbf{k}^{\prime\prime} \sigma \rangle \, \langle \mathbf{k}^{\prime\prime} \sigma | \mathcal{H}_{sd} | \mathbf{k} \uparrow \rangle \right. \\ \left. + f_{\mathbf{k}^{\prime\prime}} \, \langle \mathbf{k}^{\prime\prime} \sigma | \mathcal{H}_{sd} | \mathbf{k} \uparrow \rangle \langle \mathbf{k}^{\prime} \uparrow | \mathcal{H}_{sd} | \mathbf{k}^{\prime\prime} \sigma \rangle \right]$$

without spin flip \longrightarrow small temperature independent contribution (only terms with S_z contribute) with spin flip \longrightarrow Kondo effect

Kondo resistance

algebraic calculation leads to

$$t^{(2)} = J^2 S_z \sum_{\mathbf{k}''} \frac{2f_{\mathbf{k}''} - 1}{E(\mathbf{k}) - E(\mathbf{k}'')}$$

in addition: $D(E) \approx D$

$$\begin{array}{ll} D(E) \approx D(E_{\rm F}) & f_{{\bm k}^{\prime\prime}} \longrightarrow & {\rm step \ function \ } (T={\tt 0}) \\ \\ \delta E \ < \ |E_{\rm F} \pm \mathcal{D}| & \Sigma \ ^{\rightarrow} \int \end{array}$$

$$t^{(1)} + t^{(2)} = -JS_z \left[1 - 2JD(E_{\rm F}) \ln \frac{\mathcal{D}}{|E_{\rm F} - E(\mathbf{k})|} \right]$$

scattering probability $w({m k}\uparrow,{m k}'\uparrow)=t_{\rm K}^2$

$$\bullet \qquad w(\boldsymbol{k}\uparrow,\boldsymbol{k}^{\prime}\uparrow) \propto J^2 \, S_z^2 \left[1 - 4 \, J \, D(E_{\rm F}) \, \ln \frac{\mathcal{D}}{|E_{\rm F} - E(\boldsymbol{k})|} \right] + \dots \int$$

terms of the order of $O(J^4)$ are omitted, integration over all vectors and energies with $E(\mathbf{k}) \approx E_{\rm F} \pm k_{\rm B}T$

$$\begin{array}{c} \longrightarrow \quad \varrho(T) \propto \varrho_0 \left[1 - 4J D(E_{\rm F}) \ln \frac{\mathcal{D}}{k_{\rm B}T} \right] \\ & \searrow \\ J < 0 \quad \longrightarrow \quad \text{increase with decreasing temperature} \end{array}$$

adding the lattice contribution $\varrho_{\rm ph} = a T^5 \longrightarrow$ total resistance

concentration of magnetic impurities

 $\mathbf{5}$

minimum expected at $T_{\rm m}$

$$m_{\min} = \left(\frac{c\varrho_1}{5a}\right)^{1/2}$$

Scattering of Conduction Electrons on Localized Magnetic Moments

experimental observations:

concentration-dependent minimum

logarithmic temperature dependence

dependence for $T \rightarrow 0$? \longrightarrow logarithmic divergence is nonphysical

 $T>T_{
m K}$ weak coupling regime $(-\ln T)$

strong coupling regime

Kondo temperature: $T_{\rm K} \approx T_{\rm F} \, {\rm e}^{-1/JD(E_{\rm F})}$

strong coupling regime

 $T < T_{\rm K}$

SS 2022 MVCMP-1

- strong screening through surrounding conduction electrons
 - spin-compensated singlet ground state
 - coherent Kondo state
- transition from a magnetic to a non-magnetic system
- energy necessary to form the spin-compensated cloud: $k_{
 m B}T_{
 m K}$
- maximum in specific heat of Kondo systems at $T_{\rm K}$
- magnetic moment disappears below $T_{\rm K}$

Scattering of Conduction Electrons on Localized Magnetic Moments

resistivity flattens towards low temperatures

- normalized temperature dependence
- Kondo resistance is scalable by $T/T_{
 m x} pprox T/T_{
 m K}$ and $\Delta arrho/c$

Quantized Electrical Conductance – 1D Conductors

Starting point

SS 2022

MVCMP-1

quantized thermal conductivity:

$$\Lambda_0=rac{\pi^2}{3}rac{k_{
m B}^2T}{h}$$

Wiedemann-Franz law:

$$\widetilde{\sigma_0} = \frac{\Lambda_0}{(\pi^2/3)(k_{\rm B}^2/e^2)T} = \frac{e^2}{h}$$

$$rac{\mathrm{d}_{\mathrm{el}}}{\mathrm{d}} = rac{\pi^2}{3} \left(rac{k_{\mathrm{B}}}{e}
ight)^2 T$$

liquid mercury.

2 spin directions:

$$\sigma_0 = 2\widetilde{\sigma_0} = \frac{2e^2}{h}$$

magnetic order of nuclear spins

first observation 1969 in CaF₂ (Chapellier, Goldman, Chan, Abragam) ¹⁹F isolators: dipole-dipole interaction $E \propto \frac{\mu_n^2}{r^3}$ metals: dipole-dipole and indirect exchange interaction $H = H_{dip} + H_{RK}$ weak electron-nuclei coupling $H_{RK} \approx H_{dip}$ Ruderman Kittel strong electron-nuclei coupling $H_{RK} > H_{dip}$

metals:

strength of coupling important for relaxation time τ

$$\implies$$
 Korringa relation: $au = rac{\kappa}{T_{
m e}}$

a) strong electron-nuclei coupling

nuclear ordering in thermal equilibrium ($T_e = T_n$): there are only a few examples

- solid ³He antiferromagnetic ordering at 0.9 mK
- PrCu₆, PrNi₅, … ferromagnetic ordering at 2.5 mK, 0.4 mK, …

Van Vleck – paramagnets — magnetic field at the nuclei are enhanced by hyperfine interaction through polarization of the electrons

• Auln₂ is the only non-hyperfine-enhanced compound showing nuclear ordering in thermal equilibrium I = 9/2, $\mu = 5.5 \mu_n$, small Korringa constant $\kappa = 0.09$ Ks (pure In)

pure In: tetragonal ---- nuclear quadruple interaction ---- suppresses nuclear order

and $B_c = 28 \text{ mT}$ (superconductivity) $\longrightarrow B_{ext} > B_c$ to stay normal conducting

- \rightarrow demagnetization has to stop above $B_{\rm c}$
- → cannot demagnetized as deep

AuIn₂: fcc lattice, $B_c = 1.45 \text{ mT}$, $\kappa = 0.11 \text{ Ks}$ (similar to pure ln)

no quadruple interaction 100 μ K \rightarrow ~ 1000 s (doable)

8. Magnetic Moments – Spins

Phase diagram Auln₂

- the phase transition at 35 μK is related to nuclear ferromagnetic ordering
- as a consequence, the critical field for superconductivity is partially suppressed
- ► $B_{\text{ext}} = 2 \text{ mT} \longrightarrow \text{phase transition at 35 } \mu \text{K}$
- heat capacity is very large in absolute terms
- this phase transition is suppressed at higher fields

first order phase transition ---- reduction of entropy antiferromagnetic phase

SS 2022

MVCMP-1

in magnetic fields 3 different antiferromagnetic phases

Ρ

0.6

0.4

Entropy $S / R \ln(4)$

0.1

0.0 0.0

AF1

0.2

Negative temperatures

1938 Casimir, DuPré : concept 1951 Purcell, Pound : first realization LiH $\tau_1 = 5 \text{ min}, T = -1 \text{ K}$

prerequisites:

- system with finite number of levels
- thermal equilibrium within the system $\tau_1 \gg \tau_2$

example: silver:
$$T_{e}$$
 = 200 μ K $\tau_{1} = 5 \times 10^{4} \text{ s}$
 $\tau_{2} = 10 \text{ ms}$

susceptibility at positive and negative temperature

Thermodynamic at negative temperatures

negative temperatures are warmer than positive temperatures

internal energy, entropy, specific heat of two-level systems at positive and negative temperatures

TS term in free energy F = U - TS changes sign \longrightarrow spin system maximizes free energy!

systems that orders antiferromagnetically at positive temperatures order ferromagnetically at negative temperatures and vice versa

8. Magnetic Moments – Spins

Production of negative temperatures

- precool system in magnetic field
- isolate system sufficiently

SS 2022

MVCMP-1

adiabatic reversal of magnetic field

306

NMR experiments

normal NMR absorption T > 0

- stimulated emission T < 0
 - T>0 anti-ferromagnetic order $T_{
 m N}=560\pm60\,{
 m pK}$
 - T < 0 ferromagnetic order $T_{
 m c} = -1.9 \pm 0.4 \, {
 m nK}$

Nuclear Suceptibility

Phase diagram of silver at positive and negative temperature

- antiferromagnetic phase region T > 0
- – - ferromagnetic phase region T < 0
 - paramagnetic phase region