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provided that D ! |EF − E(k)|. D is not well defined but is expected to be
of the same order as the Fermi energy. Adding (7.32) and (7.35) we obtain
for the total scattering amplitude

t(1) + t(2) = −JSz + 2J2 Sz D(EF) ln
D

|EF − E(k)|

= −JSz

[
1 − 2J D(EF) ln

D
|EF − E(k)|

]
. (7.36)

The scattering probability w(k ↑,k′ ↑) is proportional to the square of
the scattering amplitude. Neglecting terms of the order O(J4), we find

w(k ↑,k′ ↑) ∝ J2 S2
z

[
1 − 4J D(EF) ln

D
|EF − E(k)|

]
. (7.37)

To obtain a final expression for the scattering probability an integration over
all wave vectors or over all energies should be carried out. Since only electrons
with the energy E(k) ≈ EF ± kBT can be scattered we may simply write for
the resistivity !(T ) owing to magnetic impurities in an otherwise nonmagnetic
metal:

!(T ) ∝ !0

[
1 − 4J D(EF) ln

D
kBT

]
. (7.38)

Here, we have used the abbreviation !0 for the temperature-independent
residual resistivity obtained in the first-order calculation. Since J is negative
the second term leads to an increase of the resistivity with decreasing tem-
perature. Adding the lattice contribution !ph = aT 5, we obtain for the total
resistivity the expression

! = aT 5 + c!0 + c!1 ln
D

kBT
, (7.39)

where c stands for the concentration of the magnetic impurities, and !1 is a
positive constant. As observed in experiments, a characteristic minimum is
predicted at

Tmin =
(c!1

5a

)1/5
. (7.40)

As can be seen in Fig. 7.19a, the position of the minimum depends rather
weakly on the impurity concentration. Although the iron concentration varies
by a factor four, the resistivity minimum is only shifted by about 35%. The
predicted logarithmic temperature variation of the resistivity below the min-
imum is clearly visible in Fig. 7.19b for the three gold samples with different
impurities.

Although the theory presented here was an important step towards an
understanding of the resistivity of metals with magnetic impurities, the de-
scription is unsatisfactory in several respects. In particular, the logarithmic
divergence of the resistivity for T → 0 not only contradicts experimental
observations, it is also ‘nonphysical’. At first glance, it seems that it could
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Fig. 7.19. (a) Temperature variation of the electrical resistivity of copper con-
taining different concentrations of iron. The full lines represent the theoretical
results [322]. (b) Electrical resistivity of gold samples with different magnetic im-
purities. The logarithmic variation of the resistivity below the resistance minimum
is clearly visible [323]

be improved by taking into account higher-order corrections in the calcula-
tion of the scattering amplitude or accounting for the mutual polarization of
neighboring impurity atoms. However, it turns out that the behavior of di-
lute magnetic alloys changes qualitatively in going below the so-called Kondo
temperature TK.

Until now, we have discussed the weak coupling regime (T > TK) in which
the impurities carry well-defined moments. Below TK we enter the strong
coupling regime where many-body effects play an important role in causing
a breakdown of perturbation theory. The magnetic moments of the impuri-
ties become screened by the spin polarization of the surrounding conduction
electrons. Thus, a spatially extended correlation between impurity spins and
the spins of the conduction electron develops resulting in a spin-compensated
singlet ground state. The reason for the transition from a magnetic to a non-
magnetic state is the existence of an energy gain per magnetic impurity given
by

kBTK = D e−1/JD(EF) ≈ kBTF e−1/JD(EF) . (7.41)

Conversely, this internal binding energy must be overcome in order to strip
off the spin-compensation cloud. For this reason, a maximum in the specific
heat of Kondo systems is observed at temperatures around TK.

► concentration-dependent minimum 
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Conversely, this internal binding energy must be overcome in order to strip
off the spin-compensation cloud. For this reason, a maximum in the specific
heat of Kondo systems is observed at temperatures around TK.

► logarithmic temperature dependence

experimental observations:
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As can be seen in Fig. 7.19a, the position of the minimum depends rather
weakly on the impurity concentration. Although the iron concentration varies
by a factor four, the resistivity minimum is only shifted by about 35%. The
predicted logarithmic temperature variation of the resistivity below the min-
imum is clearly visible in Fig. 7.19b for the three gold samples with different
impurities.
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strong coupling regime

Kondo temperature: 

strong coupling regime

► strong screening through surrounding conduction electrons

► transition from a magnetic to a non-magnetic system
► energy necessary to form the spin-compensated cloud:
► maximum in specific heat of Kondo systems  at
► magnetic moment disappears below   

spin-compensated singlet ground state
coherent Kondo state

CuMn 1 mK

AlMn 1000 K

232 7 Conduction Electrons

For different materials, the numerical value of the Kondo temperature
varies by many orders of magnitude. For example, TK ≈ 1 mK for CuMn,
but TK ≈ 1000 K for AlMn. This means that the Kondo effect need not
necessarily be a low-temperature phenomenon, but its consequences can be
observed most easily at reduced temperatures.

Evidence for the existence of a many-body condensed state has been found
in many experiments. Besides NMR, µSR, and Mössbauer experiments, there
are measurements of the thermoelectric power, specific heat, magnetic sus-
ceptibility, and electrical conductivity. As mentioned above, the formation of
a spin-compensated singlet ground state leads to a quenching of the mag-
netic moment of the impurity atoms. This can be shown experimentally by
measurements of the magnetic susceptibility χimp. At high temperatures, the
magnetic moments of the impurities can be considered to be independent.
Consequently, the temperature variation of χimp follows a Curie–Weiss law.
With decreasing temperature, a deviation from this behavior is expected be-
cause the effective magnetic moments µeff of the impurities are reduced. Thus,
it is reasonable to describe the susceptibility by the Curie law treating µeff

as a temperature-dependent quantity since it reflects the development of the
spin-compensated state:2

χimp =
µ2

eff(T )
3kBT

. (7.42)

Figure 7.20 displays this development in the dilute alloy AuV with a Kondo
temperature of about 300 K. The data convincingly demonstrates the disap-
pearance of the magnetic moments with decreasing temperature.
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1900 ppm Fig. 7.20. Temperature dependence
of the effective magnetic moment of
vanadium in gold, derived from mea-
surements of the magnetic suscepti-
bility [324]

2 In general, the atomic magnetic moment is given by µ2
eff = g2µ2

BJ(J+1), where g
is the Landé factor and J , as customary in atomic physic, the angular momentum
quantum number.

7.4 Kondo Effect 231

0 20 40 60 80
Temperature T / K

0.2

0.3

0.4

0.5

0.6

R
es

is
tiv

ity
ρ

/ρ
0

Cu + 500 ppm Fe

Cu + 1000 ppm Fe

Cu + 2000 ppm Fe

Temperature T / K

2.50

2.55

2.60

AuMn

1 2 50.5 1 0

5.5

6.0

6.5

∆ρ
c−1

/µ
Ω

 c
m

 (a
t. 

%
)−1

AuCr

10.5

11.0

11.5

AuFe

Fig. 7.19. (a) Temperature variation of the electrical resistivity of copper con-
taining different concentrations of iron. The full lines represent the theoretical
results [322]. (b) Electrical resistivity of gold samples with different magnetic im-
purities. The logarithmic variation of the resistivity below the resistance minimum
is clearly visible [323]

be improved by taking into account higher-order corrections in the calcula-
tion of the scattering amplitude or accounting for the mutual polarization of
neighboring impurity atoms. However, it turns out that the behavior of di-
lute magnetic alloys changes qualitatively in going below the so-called Kondo
temperature TK.

Until now, we have discussed the weak coupling regime (T > TK) in which
the impurities carry well-defined moments. Below TK we enter the strong
coupling regime where many-body effects play an important role in causing
a breakdown of perturbation theory. The magnetic moments of the impuri-
ties become screened by the spin polarization of the surrounding conduction
electrons. Thus, a spatially extended correlation between impurity spins and
the spins of the conduction electron develops resulting in a spin-compensated
singlet ground state. The reason for the transition from a magnetic to a non-
magnetic state is the existence of an energy gain per magnetic impurity given
by

kBTK = D e−1/JD(EF) ≈ kBTF e−1/JD(EF) . (7.41)

Conversely, this internal binding energy must be overcome in order to strip
off the spin-compensation cloud. For this reason, a maximum in the specific
heat of Kondo systems is observed at temperatures around TK.
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A clear, though indirect indication of the formation of a new state is
found in resistivity measurements down to lower temperatures. As shown
in Fig. 7.21, with decreasing temperature the resistivity caused by iron im-
purities increases logarithmically in a certain temperature range but finally
flattens out. At still lower temperatures, the resistivity stays constant down to
35 mK [325]. It is a remarkable feature of this graph that data from different
host materials fall on top of each other. This has been achieved by subtract-
ing out the known resistivity due to the AuCu alloy and normalizing the data
with respect to the concentration c and an appropriate temperature Tx that
is approximately the Kondo temperature TK.
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Fig. 7.21. Normalized electrical resis-
tivity ∆"/c of different Kondo systems
plotted against the reduced temper-
ature T/Tx. The values Tx = 26mK,
690 mK, and 1 K were used for AuFe,
CuAuFe, and CuFe, respectively
[323,326]

The Kondo effect, and in particular the many-body aspect of this phe-
nomenon, has attracted many theoreticians and the fundamental problems
associated with the Kondo effect are now solved. In particular, as T → 0 the
many-body effect can be described by the local Fermi-liquid theory involving
strongly renormalized quasiparticles. Here, we do not go deeply through the
extensive literature that exists, but refer to review articles [326–328].

7.5 Heavy-Fermion Systems

During the last 25 years, a new class of solids has attracted the attention
of many low-temperature physicists. These intermetallic compounds contain
rare-earth or actinide elements with partially filled 4f - or 5f -electron shells.
They are called heavy-fermion systems or heavy-electron systems because of
the high thermal effective mass m∗ of their conduction electrons. This heavy

resistivity flattens towards low temperatures 
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Starting point 

quantized thermal conductivity:  

Wiedemann-Franz law:  

σ0 = 2e2/h

2 spin directions:

co
nd

uc
ta

nc
e 

 (s
/s

0)

metallic 
carbon nano tubesliquid mercury



SS 2022
MVCMP-1

300

8. Magnetic Moments – Spins

magnetic order of nuclear spins

first observation 1969 in CaF2  (Chapellier, Goldman, Chan, Abragam)

19F

metals: dipole-dipole and  indirect exchange interaction 

isolators:  dipole-dipole interaction  

weak electron-nuclei coupling

strong electron-nuclei coupling

Ruderman Kittel

metals:
strength of coupling important for relaxation time t

Korringa relation: 

272 8 Magnetic Moments – Spins

Néel temperature of about 1 mK [378]. In Van-Vleck paramagnets such as
PrCu6, PrNi5, or Pr1−xYxNi5, large hyperfine fields can be induced at the
nuclei by moderate external fields. Without an applied field the ground state
of the 4f -shell of the Pr3+-ions is a nonmagnetic singlet ground state. But
magnetic fields change the 4f -atomic wave function and induce an electronic
magnetic moment on the ground state. This induced moment, in turn, causes
a hyperfine field that can exceed the external field by up to a factor 100. Con-
sequently, the transition to ferromagnetic nuclear order is observed in PrCu6

at Tc = 2.5 mK [379].
With decreasing temperature, the exchange of thermal energy between

different systems becomes slower and slower. For example, in the µK range
the nuclear spin-lattice relaxation time can be of the order of weeks. Since the
heat exchange between phonons and nuclear spins is generally much slower
than the spin-spin relaxation among the spins, the nuclear spins form a well-
defined subsystem that is in internal thermal equilibrium. The decoupling
of phonons and spins makes it possible to define the so-called nuclear spin
temperature Tn, which may differ by orders of magnitude from that of the
lattice.

Since nuclear spins couple much more strongly to conduction electrons
than to phonons, the relaxation of nuclei is faster in metals. Nevertheless,
under certain circumstances it is possible to cool nuclear spins well below
the electron temperature Te. The reason for this surprising effect is that the
strong coupling not only accelerates the energy exchange between nuclei and
electrons but also leads to an enhancement of the coupling between the nu-
clear spins via the Ruderman–Kittel interaction, i.e., the indirect exchange
interaction.8

Frequently, a distinction is made between systems with weak and sys-
tems with strong nucleus–electron coupling. In the case of weak coupling the
interaction strength is comparable with the nuclear magnetic dipole–dipole
interaction. As examples of weak coupling systems we mention Cu, Au, Ag,
or Rh. If the indirect exchange interaction via the conduction electrons pre-
dominates, as in Tl, In, Sn, and Sc, the coupling is called ‘strong’.

8.4.1 Strong Nucleus–Electron Coupling

Strongly coupled systems are particularly well suited for the observation of
nuclear ordering. In this case, electrons and nuclei are in equilibrium because
of the relatively short relaxation time, i.e., Te = Tn. The nucleus-electron
relaxation time is given by the Korringa relation [380]

τ =
κ

Te
, (8.42)

8 We have already discussed the indirect exchange interaction between localized
magnetic moments via conduction electrons in Chap. 7, when the Kondo ef-
fect was discussed. However, in that case we considered the localized magnetic
moments of electrons.
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a) strong electron-nuclei coupling

nuclear ordering in thermal equilibrium (Te = Tn):   there are only a few examples

► solid 3He antiferromagnetic ordering at 0.9 mK

► PrCu6, PrNi5, … ferromagnetic ordering at 2.5 mK, 0.4 mK, ….

► AuIn2 is the only non-hyperfine-enhanced compound showing nuclear ordering in thermal equilibrium

Van Vleck – paramagnets magnetic field at the nuclei are enhanced by hyperfine 
interaction through polarization of the electrons

I = 9/2, µ = 5.5 µn, small Korringa constant   k = 0.09 Ks  (pure In)

and Bc = 28 mT (superconductivity)             Bext > Bc to stay normal conducting

AuIn2: fcc lattice,  Bc = 1.45 mT ,   k = 0.11 Ks (similar to pure In) 

100 µK ~ 1000 s  (doable)

suppresses  nuclear orderpure In: tetragonal            nuclear quadruple interaction

demagnetization has to stop above Bc

cannot demagnetized as deep

no quadruple interaction
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where κ is the Korringa constant . The value of κ not only determines the
nucleus-electron relaxation time, it is also a measure for the strength of the
indirect exchange interaction between the nuclei.

Apart from solid 3He and Van-Vleck paramagnets, spontaneous nuclear
ordering in thermal equilibrium has, to our knowledge, only been observed
in the intermetallic compound AuIn2. At first glance, pure indium metal
seems to be a very good candidate for investigations of spontaneous nuclear
ordering. Because of its large magnetic moment µ = 5.5µn, large nuclear
spin I = 9/2, and small Korringa constant κ = 0.09 K s, ordering is expected
to take place at relatively high temperatures. However, the strong electric
quadrupole interaction of the nuclei in the tetragonal indium crystal and
the relatively high critical field of 28 mT of this superconductor suppresses
ordering. To avoid these problems the cubic compound AuIn2 with a critical
field of only 1.45 mT was used in the experiment considered here [381]. In
addition, the Korringa constant κ = 0.11 K s of AuIn2 does not differ much
from that of pure indium.

In Fig. 8.23, measurements of the specific heat of AuIn2 at different ex-
ternal magnetic fields are displayed. The magnetic field seen by the nuclei
consists of two parts. In addition to the external field Bext, there is an in-
ternal field Bint produced by the nuclear moments. The resultant effective
field is Beff =

√
B2

ext + B2
int. The internal field Bint can be neglected at high
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Fig. 8.23. Specific heat of AuIn2

versus temperature measured at
different magnetic fields. The full
lines reflect the contributions ex-
pected for noninteracting indium
nuclei [381]
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external fields. In this case, the specific heat varies with temperature as for
noninteracting spin systems, and can therefore be described by a Schottky
anomaly. With decreasing field, deviations from this behavior are observed,
and at Bext = 2 mT a sharp maximum of the specific heat is found at 35µK,
indicating the occurrence of a phase transition to ferromagnetic order. It is
worth noting that the specific heat is very large in this temperature range.

It is remarkable that superconductivity and ferromagnetic nuclear or-
der are simultaneously present in AuIn2. This effect is clearly visible in
the phase diagram drawn in Fig. 8.24, which shows the interdependence
of these two quantities. At ‘higher temperatures’, i.e., between 0.2 mK
and 207 mK, the critical magnetic field follows the well-known relation
B∗

c (T ) = B∗
c (0)[1 − (T 2/T 2

c )] of type I superconductors (see (10.2)) where
the asterisks indicate that the magnetization of the sample has not been
taken into account. Below 0.2 mK, the critical field decreases slightly on
cooling by an amount proportional to the nuclear magnetization, i.e., ac-
cording to Bc(T ) = B∗

c − µ0M(Bc, T ). Finally, at Tc,n ≈ 35µK, a tran-
sition from the nuclear paramagnetic phase to the ordered phase occurs,
which is accompanied by a distinct reduction of the critical field. Below
Tc,n, the sample remains superconducting in weak magnetic fields, indicating
that superconductivity and nuclear ferromagnetism coexist. In this temper-
ature range, the measured value of the critical field depends on the precool-
ing conditions implying that domains are present in the nuclear ferromag-

0.001 0.01 0.1 1 10 100
Temperature T / mK

0.0

0.5

1.0

1.5

2.0

M
ag

ne
tic

fie
ld

B
/m

T

Nuclear
ferromagnet

+
normal

conductor

Nuclear
ferromagnet

+
super-

conductor

Nuclear paramagnet
+

normal conductor

Type I superconductor

AuIn2

Fig. 8.24. Phase diagram of AuIn2. Below 35 µK (dashed vertical line) the nuclear
magnetic moments are aligned. The dashed horizontal line indicates the critical
magnetic field in the ordered phase. The measured critical field is depicted by
full circles, the solid line represents the critical field B∗

c (T ) according to the BCS
theory. In addition, the ordering temperature measured via the nuclear magnetic
susceptibility is plotted for fields B ≤ 2 mT (open circles) [382]

► Bext = 2 mT phase transition at 35 µK

► heat capacity is very large in absolute terms
► this phase transition is suppressed at higher fields

Phase diagram AuIn2

► the phase transition at 35 µK is related to

► as a consequence, the critical field for

nuclear ferromagnetic ordering 

superconductivity is partially suppressed
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b) weak electron-nuclei coupling

nuclear order expected in the nK range
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Fig. 8.25. Static nuclear spin suscep-
tibility χ(0) of copper as a function of
entropy [384]

heat L = Tc,n∆Sc,n = 0.09µJ mole−1 was observed, where ∆Sc,n is the mea-
sured entropy jump. This observation clearly indicates that a first-order phase
transition occurs in the spin system. In further investigations, three differ-
ent antiferromagnetic phases were found. In Fig. 8.27, the phase diagram
is shown that was constructed from measurements of the susceptibility and
NMR experiments on single crystals with a magnetic field applied in the
[001] direction. The shaded areas mark the regions in which first-order tran-
sitions take place. In the upper-right corner of this figure the spin arrange-
ments that were originally proposed, are depicted schematically. In later ex-
periments, it was shown that the suggested structures are not fully consistent
with neutron-diffraction data. For example, the phases AF1 and AF2 con-
sist of four sublattices rather than two. In particular, in the phase AF2 the
observed Bragg reflections are consistent with a so-called ‘up-up-down spin
configuration’ [386]. This kind of order had not been observed before in any
fcc antiferromagnet.
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Fig. 8.26. Reduced entropy S/(R ln 4)
of copper in zero field as a function
of temperature. Close to the entropy
jump at 58 nK, namely in the range
S = (0.38− 0.56)R ln 4 it was not possi-
ble to determine the temperature with
a high enough accuracy [384]8.5 Negative Spin Temperatures 277
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Fig. 8.27. External magnetic field ver-
sus entropy for nuclear spins in copper.
The shaded areas mark the regions in
which first-order phase transitions take
place. The spin arrangements originally
proposed for AF1, AF2, and AF3 are
schematically illustrated in the top-right
corner [384,385]

In later experiments, nuclear magnetic ordering has also been observed in
silver and rhodium by different techniques. Because of the smaller magnetic
moment of these nuclei, ordering occurs at much lower temperatures. In mea-
surements of the susceptibility the transition temperatures were determined
to be Tc,n = 560 pK and Tc,n = 280 nK for Ag and Rh, respectively.

As we shall see, reversal of the external field gives rise to interesting
new effects provided the nuclear relaxation is sufficiently slow. In this case,
negative occupation temperatures can temporarily be generated. In the fol-
lowing section we will discuss some measurements of this type.

8.5 Negative Spin Temperatures

The concept of negative occupation temperatures was introduced in 1938
by Casimir and DuPré [387]. The main idea associated with negative spin
temperatures is illustrated in Fig. 8.28. The schematic diagram reflects the
occupation of the levels of noninteracting spin-1/2 systems in an external
magnetic field B. The same ideas readily apply to interacting spins.

At the absolute T = +0, all nuclear spins are in the ground state, i.e.,
they are aligned parallel to the external field. With increasing temperature
a growing number of spins is excited, and finally at T = +∞ both levels are
equally populated. If the energy of the spin system is further increased by
some means, an inverted occupation can be obtained, which can be described
by the Boltzmann factor, but now with a temperature T < 0. Finally, only
the upper levels will be populated, i.e., the temperature T = −0 is reached.
The transition from positive to negative temperatures takes place smoothly
at T ±∞.

In principle, the experimental production of negative temperatures is
rather simple because a sufficiently fast field reversal leads to an inversion of
the two energy levels. From an experimental point of view it is important to

not yet possible in 
thermal equilibrium

Example: Copper, I = 3/2,    69.1% 63Cu,    30.9% 65Cu

Korringa constant k = 1.2 Ks

100 µK ~ 3 hours

► phase transition at Tn = 58 nK
► first order phase transition            reduction of entropy 

► in magnetic fields 3 different antiferromagnetic phases

antiferromagnetic phase

fast cooling:  Tn ≠  Te
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Negative temperatures

1938 Casimir, DuPré :   concept
1951 Purcell, Pound  :   first realization LiH

t1 = 5 min, T = -1 K

prerequisites:

► system with finite number of levels
► thermal equilibrium within the system
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8.5.2 Nuclear Ordering

At ordinary temperatures, the Gibbs free energy G = H − |T |S possesses
a minimum since, in equilibrium, the entropy S exhibits a maximum. In
our notation, H = U − BM represents the magnetic enthalpy. At T < 0,
Gibbs free energy G = H + |T |S reaches its maximum in equilibrium. This
has a profound effect on the spontaneous magnetic order of nuclear spins.
For example, in silver the Ruderman–Kittel interaction favors an antiparallel
orientation of next-nearest neighbors resulting in an antiferromagnetic order
as T approaches +0. At negative temperatures, thermodynamics predict the
occurrence of a ferromagnetic order since the energy must now be maximized.

In Fig. 8.30, the magnitude of the inverse static susceptibility |χ′(0)|−1

of silver is shown for positive and negative temperatures. This set of data
has been deduced from measurements of the imaginary part χ′′ in the fre-
quency range from 30 to 180 Hz by applying the Kramers–Kronig relation
χ′(0) = (2/π)

∫
(χ′′/ω)dω. Clearly, the susceptibility at negative tempera-

tures is much higher than at positive temperatures. This is due to the fact
that at T < 0 the spin system tries to maximize its energy at constant en-
tropy. Since the exchange interaction is antiferromagnetic in silver, the state
with maximum energy has ferromagnetic order with a higher susceptibility.
Although these data clearly reflect the different behavior of nuclear spins
at positive and negative temperatures, they also demonstrate that in these
experiments spontaneous nuclear order of silver was not reached. No devi-
ation from the Curie–Weiss behavior was observed. In later experiments,
the existence of an antiferromagnetic phase was demonstrated for T > 0
with a Néel temperature TN = 560 ± 60 pK and a ferromagnetic phase with
Tc = −1.9 ± 0.4 nK. The magnetic field–entropy phase diagram of silver is
shown in Fig. 8.31. At T > 0 the spins are antiferromagnetically ordered in-
side the solid curve and paramagnetic outside this curve. Within the dashed
curve the spins are expected to be ferromagnetically ordered at negative
temperatures.
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Fig. 8.30. Magnitude of the inverse
static magnetic susceptibility 1/|χ′(0)|
of silver as a function of |T | at positive
and negative temperatures. Full lines
reflect the Curie–Weiss law for the fer-
romagnetic (T < 0), and antiferromag-
netic (T > 0) phase [390]

example: silver: Te = 200 µK

8.5 Negative Spin Temperatures 279

the spin ensemble must be sufficiently weakly coupled to the environment, but
the spins must be in thermodynamic equilibrium among themselves. There-
fore, the relaxation time τ2 for establishing thermal equilibrium among the
nuclear spins must be much shorter than the relaxation time τ1, the time
in which the spin system comes into equilibrium with its surroundings. For
silver at Te = 200µK, the condition τ1 ! τ2 is fulfilled, since τ1 = 5 × 104 s,
and τ2 = 10ms.

Systems at negative temperatures exhibit unusual properties. Since en-
ergy has to be added to go from positive to negative temperatures, systems
with T < 0 are always hotter than systems with T > 0. This fact leads to
interesting consequences. Suppose there is a spin system with a negative tem-
perature and another one with a positive temperature. After making thermal
contact, heat will flow from the system with negative temperature to the sys-
tem with positive temperature! Adiabatic demagnetization of a spin system
at T < 0 leads to heating and not to cooling, as it does at T > 0. Accordingly,
a spin system at T < 0 has to be heated to increase its polarization.

The order of temperatures on the absolute Kelvin scale, from the coldest
to hottest is the following: +0K → 300K → ±∞K → −300K → −0K.
This means that a system at T = +0 K cannot be cooled further because
it cannot give up more of its energy, and vice versa, a system at T = −0K
cannot be heated further because it cannot absorb more energy. The varia-
tion of the entropy S/(R ln 2), the specific heat CB/R and the internal en-
ergy U/(N |µ|B) of an ensemble of two-level systems are shown in Fig. 8.29 as
a function of 1/T for positive and negative temperatures. The quantities are
normalized in such a way that common axes without units can be used. From
this graph, the symmetry of the thermodynamic quantities with respect to
positive and negative temperatures becomes evident.
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Fig. 8.29. Reduced entropy, specific heat,
and internal energy of an ensemble of two-
level system versus −|µ|B/(kBT ) [388]
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susceptibility at positive and negative temperature
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Thermodynamic at negative temperatures
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negative temperatures are warmer than positive temperatures

Q
.

gets warmer

system cannot be cooled further,
it cannot release any energy

system cannot be warmed further,
it cannot take up any energy

internal energy, entropy, specific heat of 
two-level systems at positive and negative
temperatures 

NMR: absorption            stimulated emission (no laser)  

TS term in free energy F = U - TS changes sign             spin system maximizes free energy!

systems that orders antiferromagnetically at positive temperatures
order ferromagnetically at negative temperatures and vice versa  
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Production of negative temperatures
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Fig. 8.28. Occupation of the energy levels of nuclear spins in a constant external
magnetic field at positive and negative temperatures. As described in the text, the
transition from positive to negative temperatures can be achieved by a reversal of
the applied magnetic field [388]

carry out the field reversal rapidly in comparison with the spin-spin relax-
ation time τ2 by which thermal equilibrium of the spin system is achieved. If
the field change is slow, the spins will follow the field reversal adiabatically,
and negative temperatures will not be obtained. During the quick field flip,
the Boltzmann distribution of the spins breaks down and for a moment, the
spin system cannot be assigned a temperature. Once the field is reversed and
the system is in internal equilibrium, it can remain in a state of negative
temperature for a long time. The spins relax towards positive temperatures
by exchanging energy with phonons or conduction electrons, and pass, in this
way, the temperature T ±∞.

The first experimental realization of a negative spin temperature was
achieved in 1951 by Purcell and Pound in investigations of the system LiH
[389]. Evidence for the occurrence of a negative occupation temperature was
provided in this experiment by NMR measurements where stimulated emis-
sion was observed.

8.5.1 Thermodynamics at Negative Temperatures

A necessary condition for the occurrence of negative temperatures is that
the number of allowed energy states of the system is limited. Otherwise, the
Boltzmann factor exp(−Em/kBT ) would not converge for T < 0 and the in-
ternal energy would tend to infinity. Therefore, the lattice of solids or the
conduction electrons cannot be brought to negative temperatures. From
the viewpoint of thermodynamics, a further essential requirement is that
the entropy S does not monotonically increase with the internal energy U .
Since T = 1/(∂S/∂U)B , it follows that for positive and negative tempera-
tures the sign of (∂S/∂U)B must be different. As a consequence, the entropy
decreases with increasing internal energy for a system at T < 0. Furthermore,

► precool system in magnetic field
► isolate system sufficiently 
► adiabatic reversal of magnetic field
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Phase diagram of silver at positive and negative temperature
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Fig. 8.31. Phase diagram of the nuclear spins of silver at positive and negative
temperatures. The full line connects the data for T > 0. Inside this line the spin
system is antiferromagnetically ordered. The dashed curve represents the phase
boundary between the ferromagnetic (inside) and paramagnetic state at T < 0. It
is determined by the two full circles and the intercept with the S = 0 axis. The
shape is based on the mean-field theory assuming a linear relationship between S
and T [388]

8.5.3 Stimulated Emission

The effect of stimulated emission in NMR experiments provides a confirma-
tion of the occurrence of negative temperatures. As an example, we show
in Fig. 8.32 the result obtained in a measurement of the imaginary part of
the magnetic susceptibility of silver as a function of frequency. At T > 0, an
NMR absorption line is observed, but at T < 0 emission takes place, i.e., the
imaginary part of the NMR signal has opposite sign. In the case of negative
temperatures the resonance is shifted towards higher frequencies because of
the higher susceptibility of silver in the ferromagnetic phase.
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Fig. 8.32. Imaginary part of the
magnetic susceptibility of silver at
positive and negative temperatures.
The absorption line at T > 0 is de-
picted by open circles, the emission
spectrum at T < 0 by full circles
[391]
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NMR experiments

ferromagnetic phase region      

antiferromagnetic phase region      

Ag

paramagnetic phase region

► normal NMR absorption
► stimulated emission
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8.5.2 Nuclear Ordering

At ordinary temperatures, the Gibbs free energy G = H − |T |S possesses
a minimum since, in equilibrium, the entropy S exhibits a maximum. In
our notation, H = U − BM represents the magnetic enthalpy. At T < 0,
Gibbs free energy G = H + |T |S reaches its maximum in equilibrium. This
has a profound effect on the spontaneous magnetic order of nuclear spins.
For example, in silver the Ruderman–Kittel interaction favors an antiparallel
orientation of next-nearest neighbors resulting in an antiferromagnetic order
as T approaches +0. At negative temperatures, thermodynamics predict the
occurrence of a ferromagnetic order since the energy must now be maximized.

In Fig. 8.30, the magnitude of the inverse static susceptibility |χ′(0)|−1

of silver is shown for positive and negative temperatures. This set of data
has been deduced from measurements of the imaginary part χ′′ in the fre-
quency range from 30 to 180 Hz by applying the Kramers–Kronig relation
χ′(0) = (2/π)

∫
(χ′′/ω)dω. Clearly, the susceptibility at negative tempera-

tures is much higher than at positive temperatures. This is due to the fact
that at T < 0 the spin system tries to maximize its energy at constant en-
tropy. Since the exchange interaction is antiferromagnetic in silver, the state
with maximum energy has ferromagnetic order with a higher susceptibility.
Although these data clearly reflect the different behavior of nuclear spins
at positive and negative temperatures, they also demonstrate that in these
experiments spontaneous nuclear order of silver was not reached. No devi-
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8.5.2 Nuclear Ordering
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our notation, H = U − BM represents the magnetic enthalpy. At T < 0,
Gibbs free energy G = H + |T |S reaches its maximum in equilibrium. This
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