

SS 2022

MVCMP-1

Element	Ŷехр	Ytheo	$m_{ m th}^*/m$	Element	Ŷехр	γ_{theo}	$m_{ m th}^*/m$
Ag	0.64	0.64	1.00	Cu	0.69	0.50	1.37
Al	1.35	0.91	1.48	Ga	0.60	1.02	0.59
Au	0.69	0.64	1.08	In	1.66	1.26	1.31
Ba	2.70	1.95	1.38	К	2.08	1.75	1.19
Be	0.17	0.49	0.35	Li	1.65	0.75	2.19
Ca	2.73	1.52	1.80	Mg	1.26	1.00	1.26
Cd	0.69	0.95	0.73	Na	1.38	1.3	1.22
Cs	3.97	2.73	1.46	Pb	2.99	1.50	1.99

good qualitative agreement for simple metals

 $\gamma_{
m exp}/\gamma_{
m theo} = m_{
m th}^*/m$ for quantitative agreement

but: transition series metals

example nickel: $m_{\rm th}^* \approx 15\,m$

reason is *d*-electrons contribute, which are not (completely) free

involved in covalent bond, highly oriented
 no spherical Fermi surface

- *d*-electrons with large density of state dominate at $E_{\rm F}$
- d-electrons are localized

b) metal with heavy electrons

examples: CeCu₂Si₂

cer electronic configuration [Xe] $5d^1 4f^1 6s^2$

- ► T > 15 K, D(E) and m^* are constant
- ▶ T < 15 K, C/T increase strongly with decreasing temperature

Heavy fermion systems

SS 2022

MVCMP-1

- interesting class of solids with strongly correlated electrons
- effective masses m^* up to 2000 m_e observed
- origin: interaction with localized spins

$$\chi = \mu_0 \mu_{\rm B}^2 D(E_{\rm F}) \propto n^{1/3} m^*$$

$$\searrow$$
Wilson ratio:
$$R = \frac{\chi}{\gamma} \frac{\pi^2 k_{\rm B}^2}{\mu_0 \mu_{\rm eff}^2}$$

$$\swarrow$$

$$\gamma \propto n^{1/3} m_{\rm th}^*$$

important: Fermi liquid theory

$$C = rac{m^*}{m} \ C_{
m FG} \ = \left(1 + rac{1}{3} \ F_1
ight) C_{
m FG}$$

analogy to ³He reaches even further

→ some heavy fermion systems show unconventional superconductivity (S \neq 0) : UPt₃, URu₂Si₂...

metals, no superconductors, no semiconductors

Boltzmann equation \longleftrightarrow kinetic gas theory

- starting point: equilibrium distribution without external fields $f_0(\mathbf{k})$
- with field: stationary non-equilibrium value of $f(m{k},m{r},t)$

Fermi-Dirac distribution

• expand $f_0(\mathbf{k}) - f(\mathbf{k}, \mathbf{r}, t)$ in linear order + relaxation ansatz for collisions

$$\Rightarrow \text{ linearized Boltzmann equation } f(\mathbf{k}) \approx f_0(\mathbf{k}) + \underbrace{f_0(\mathbf{k})}_{\hbar} \mathcal{E} \cdot \underbrace{\frac{\partial f_0(\mathbf{k})}{\partial \mathbf{k}}}_{\text{electric field}}$$

 $\implies j_x = -e \int D(k) v_x(k) f(k) dk = -\frac{e}{\pi^2} \int k^2 v_x(k) f(k) dk$

$$\longrightarrow \sigma = \frac{1}{3} e^2 D(E_{\rm F}) v_{\rm F}^2 \tau(E_{\rm F}) \longrightarrow \sigma = \frac{n e^2}{m} \tau(E_{\rm F})$$

- defect scattering
- phonon scattering
- magnon scattering (in ferromagnets)
- electron-electron scattering (can be neglected in most cases)

a) defect scattering

local charge density variations

local strain fields (less important)

Local charge variations

- Rutherford scattering on ionic cores of impurity atoms
- scattering cross section : $\sigma_{
 m cross} \propto \left(\Delta Z\right)^2$
- resistivity $\varrho_{\rm D} \propto \left(\Delta Z\right)^2$
- residual resistance of copper with 1 at% impurities with different valence electrons configurations
- agrees well with: $\varrho_{
 m D} \propto \left(\Delta Z\right)^2$

Concentration dependence

example: binary mixture $A_x B_{1-x} \longrightarrow mixing$ increases the resistance

average potential $U_0 = xU_A + (1-x)U_B$

deviations at atoms A and B: $(U_0-U_A)=(1-x)(U_{
m B}-U_{
m A})$ $(U_0-U_{
m B})=x(U_{
m A}-U_{
m B})$

scattering probability:

$$w_{\mathrm{A}} = (1-x)^2 \left| \int \psi^*(\mathbf{k}) \left(U_{\mathrm{B}} - U_{\mathrm{A}} \right) \psi(\mathbf{k}') \,\mathrm{d}^3 k'
ight|^2$$

 $w_{\mathrm{B}} = x^2 \left| \int \psi^*(\mathbf{k}) \left(U_{\mathrm{A}} - U_{\mathrm{B}} \right) \psi(\mathbf{k}') \,\mathrm{d}^3 k'
ight|^2 = rac{x^2}{(1-x)^2} \, w_{\mathrm{A}}$

resistivity:

 $\varrho_{\rm de} \propto x w_{\rm A} + (1-x) w_{\rm B}$

Nordheim rule: $\varrho_{\mathrm{de}} \propto x(1-x)$

- $Cu_{1-x}Au_x$ data agree with Nordheim rule

Electron-Phonon scattering

only electrons at the Fermi surface can participate $|{m k}| pprox |{m k}'|$

Electron-Phonon scattering

a) high temperatures ($T > \theta_{\rm D}$) $\ell \propto \tau v_{\rm F} \longrightarrow \ell^{-1} \propto n_{\rm ph} \propto T \longrightarrow \varrho \propto T$

- b) intermediate temperatures ($T < \theta_{\rm D}$)
 - cross-section depends on temperature
 - number of scattering centers (phonons) reduces
 - effectiveness of scattering process goes down

 $arrho_{
m ph} \propto au_{
m eff}^{-1} \propto \left(rac{T}{\Theta}
ight)^5$

Bloch-Grüneisen law

- ► reduced plot → material independent
- defect scattering substracted
- good agreement with Bloch-Grüneisen

 $(1 - \cos \phi) \propto T^2 / \Theta^2$

 $\left. \begin{array}{c} e_0^2 \propto \omega/\Theta \propto T/\Theta \\ \\ n_{\rm ph} \propto T^2/\Theta^2 \end{array} \right\} \quad \tau^{-1} \propto n\Sigma \propto T^3/\Theta^3$

Reduced Temperature T / Θ

Swall angles
$$\not p$$

 $A (1 - \cos \varphi) \times \varphi^2$
with $q = (E)q_{max}$
and $k_F = E$
 $\gamma = \frac{q}{k_F} \approx \frac{1}{2} \frac{1}{k_F} = \frac{1}{2}$
 $A = \frac{q}{k_F} \approx (E)^2$

spin waves in ferromagnets

ground state

 $\begin{array}{l} \text{collective excitations} \\ \text{spin waves} \ \widehat{=} \ \text{magnons} \end{array}$

283

Thermal conductivity of a free Fermi gas

$$arLambda_{
m el} = rac{1}{3} \, c_V^{
m el} \, v \, \ell = rac{1}{3} \, rac{\pi^2 n k_{
m B}^2 T}{m v_{
m F}^2} \, v_{
m F} \, \ell$$

SS 2022

MVCMP-1

if scattering processes are identical for electrical and thermal transport

$$\frac{\Lambda_{\rm el}}{\sigma} = \frac{\pi^2}{3} \left(\frac{k_{\rm B}}{e}\right)^2 T = \mathcal{L}T$$
$$\mathcal{L} = 2.45 \times 10^{-8} \,\mathrm{V}^2 \,\mathrm{K}^{-2}$$

- Lorenz number depends on temperature
- works well at very low and very high temperatures

SS 2022

MVCMP-1

SS 2022 MVCMP-1

Interaction of Conduction Electrons and Localized Magnetic Moments

- 1930 Meissner and Voigt observe a resistance minimum for Au and Cu with magnetic impurities
 - example: Cu + 440 ppm Fe

SS 2022 MVCMP-1

- resistance minimum at 27 K
- 1964 explanation by Kondo by spin dependent scattering of electrons on magnetic impurities
- a) Influence of conduction electrons on localized magnetic moments
- example: *d*-levels of transition metals in simple metals
- d-d interaction \rightarrow splitting and polarization of d-levels, because of crystal field
- interaction of d-electrons with conduction electrons (s) \longrightarrow hybrid states

width determined by $s \leftrightarrow d$ transition rate

matrix element

 ${\cal V}^2 \, D_s(E_{d\sigma})$

golden rule:
$$\frac{W_{\sigma}}{\hbar} = \frac{\pi}{\hbar} \chi$$

Density of states of *s*-electrons at $E_{d\sigma}$

Scattering of Conduction Electrons on Localized Magnetic Moments

inelastic scattering electrical resistance elastic scattering ---Kondo effect consider (\star) in "*N* representation" $\mathcal{H}_{sd} = -J S \cdot s \, \delta(r - R)$ $\mathcal{H}_{sd} = -J \sum S_z (c^+_{\mathbf{k}^{\prime}\uparrow} c_{\mathbf{k}\uparrow} - c^+_{\mathbf{k}^{\prime}\downarrow} c_{\mathbf{k}\downarrow}) + S_+ c^+_{\mathbf{k}^{\prime}\downarrow} c_{\mathbf{k}\uparrow} + S_- c^+_{\mathbf{k}^{\prime}\uparrow} c_{\mathbf{k}\downarrow}$ Jun Kondo / kk' Harmonic Oscillator const. < 0! $H = t_1 \omega \left(a^{\dagger} a + \frac{1}{2} \right) \qquad H = \frac{p^2}{2m} + \frac{m \omega^2 G^2}{2}$ $Q = \begin{bmatrix} t_{h} \\ 2 \end{bmatrix} (a + a^{+})$ $c_{\mathbf{k}}^+$ $P = \frac{1}{2} \sqrt{\frac{m \omega t}{2}} (\alpha - \alpha^{\dagger})$ annihilation operator $C_{\mathbf{k}}$ $\alpha^{+} = -\frac{m\omega}{2\pi} \left(Q - \frac{i}{m\omega} P \right)$ $S_{+} = S_{x} + iS_{y}$ $S_{-} = S_{x} - iS_{y}$ spin states $\alpha = \sqrt{\frac{m\omega}{2t}} \left(Q + \frac{1}{m\omega} P \right)$

wave vector of conduction electrons

SS 2022

MVCMP-1

ceta = N

 $a^{+}(4_{n}) = (n+1)(4_{n+1})$

