### 6. Phonons

SS 2022

MVCMP-1

- 6.1 Specific heat Debye model:
- assumptions: solids are elastic, isotropic homogenous continua
  - excitations: sound waves with linear dispersion
  - Bose-Einstein distribution

internal energy: cut-off frequency  $\rightarrow$  Debye frequency  $U(T) = \int_{0}^{\hbar\omega_{\rm D}} \hbar\omega \mathcal{D}(\omega) f(\omega, T) \,\mathrm{d}\omega$   $\propto \omega^{2}$ 

specific heat:

$$C_{V} = \frac{\partial U}{\partial T} = 9Nk_{\rm B} \left(\frac{T}{\Theta}\right)^{3} \int_{0}^{x_{\rm D}} \frac{x^{4} e^{x}}{\left(e^{x} - 1\right)^{2}} dx$$
$$\Theta = \hbar\omega_{\rm D}/k_{\rm B}$$



#### Limiting cases:

SS 2022

MVCMP-1

(i)  $T \to \infty \longrightarrow x \to 0$ 

$$\lim_{x \to 0} \int_{0}^{x_{\rm D}} \frac{x^4 \,\mathrm{e}^x}{(\mathrm{e}^x - 1)^2} \mathrm{d}x \approx \int_{0}^{x_{\rm D}} \frac{x^4 \cdot 1}{x^2} \mathrm{d}x = \frac{x_{\rm D}^3}{3} = \frac{1}{3} \left(\frac{\Theta}{T}\right)^3$$

$$(1 + x - 1)^2$$



ii) 
$$T \to 0 \longrightarrow x_{\mathrm{D}} \to \infty$$

$$C_V = 9Nk_{\rm B} \left(\frac{T}{\Theta}\right)^3 \underbrace{\int\limits_{0}^{\infty} \frac{x^4 \mathrm{e}^x}{\left(\mathrm{e}^x - 1\right)^2} \mathrm{d}x}_{4\pi^4/15} = \frac{12\pi^4}{5} Nk_{\rm B} \left(\frac{T}{\Theta}\right)^3$$

$$\longrightarrow$$
  $C_V = \frac{12\pi^4}{5} N k_{\rm B} \left(\frac{T}{\Theta}\right)^3$ 



- perfect agreement with theory
- only small temperature range
- Debye temperature  $\Theta = 92 \,\mathrm{K}$





| Element         | $\Theta\left(\mathrm{K}\right)$ | Element         | $\Theta\left(\mathrm{K}\right)$ | Element             | $\Theta\left(\mathrm{K}\right)$ | Element             | $\Theta\left(\mathrm{K}\right)$ |
|-----------------|---------------------------------|-----------------|---------------------------------|---------------------|---------------------------------|---------------------|---------------------------------|
| Ar              | 92                              | Cu              | 347                             | Mn                  | 409                             | Sc                  | 346                             |
| $\mathrm{Ac}^*$ | 100                             | Er              | 118                             | Mo                  | 423                             | Se                  | 152                             |
| Ag              | 227                             | Fe              | 477                             | $N^*$               | 70                              | Si                  | 645                             |
| Al              | 433                             | Ga              | 325                             | Na                  | 156                             | $\operatorname{Sm}$ | 169                             |
| Am              | 121                             | Gd              | 182                             | Nb                  | 276                             | Sn                  | 199                             |
| As              | 282                             | Ge              | 373                             | Nd                  | 163                             | $\operatorname{Sr}$ | 147                             |
| Au              | 162                             | H (para)        | 122                             | Ne                  | 75                              | Ta                  | 245                             |
| В               | 1480                            | H (orth)        | 114                             | Ni                  | 477                             | Tb                  | 176                             |
| Ba              | 111                             | <sup>3</sup> He | 19-33                           | Np                  | 259                             | Те                  | 152                             |
| Be              | 1481                            | Hf              | 252                             | $O^*$               | 90                              | Th                  | 160                             |
| Bi              | 120                             | Hg              | 72                              | Os                  | 467                             | Ti                  | 420                             |
| C (Dia.)        | 2250                            | Но              | 190                             | Pa                  | 185                             | Tl                  | 78                              |
| C (Gra.)        | 413                             | Ι               | 109                             | Pb                  | 105                             | Tm                  | 200                             |
| Ca              | 229                             | In              | 112                             | Pd                  | 271                             | U                   | 248                             |
| Cd              | 210                             | Ir              | 420                             | Pr                  | 152                             | V                   | 399                             |
| Ce              | 179                             | Κ               | 91                              | Pt                  | 237                             | W                   | 383                             |
| Cl*             | 115                             | Kr              | 72                              | Rb                  | 56                              | Xe                  | 64                              |
| Cm              | 123                             | La              | 145                             | Re                  | 416                             | Y                   | 248                             |
| Со              | 460                             | Li              | 344                             | $\operatorname{Rh}$ | 512                             | Yb                  | 118                             |
| Cr              | 606                             | Lu              | 183                             | Ru                  | 555                             | Zn                  | 329                             |
| $\mathbf{Cs}$   | 40                              | Mg              | 403                             | $\operatorname{Sb}$ | 220                             | Zr                  | 290                             |

247

SS 2022 MVCMP-1



| Compound                  | $\Theta$ (K) | Compound                       | $\Theta$ (K) | Compound           | $\Theta$ (K) |
|---------------------------|--------------|--------------------------------|--------------|--------------------|--------------|
| Ag <mark>Br</mark> *      | 140          | $\mathrm{Cr}_2\mathrm{Cl}_3^*$ | 360          | $MgO^*$            | 800          |
| $AgCl^*$                  | 180          | $\mathrm{FeS}_2^*$             | 630          | $MoS_2^*$          | 290          |
| $As_2O_3^*$               | 140          | KBr                            | 173          | RbBr               | 131          |
| $As_2O_5^*$               | 240          | KCl                            | 235          | RbCl               | 165          |
| $AuCu_3$                  | 285          | KI                             | 131          | RbI                | 103          |
| BN*                       | 600          | InSb                           | 206          | $SiO_2$ (Quartz)   | 470          |
| $CaF_2$                   | 508          | LiF                            | 736          | $TiO_2^*$ (Rutile) | 450          |
| $\operatorname{CrCl}_2^*$ | 80           | LiCl                           | 422          | ZnS                | 315          |

### low-dimensional systems

SS 2022

MVCMP-1

$$D(\omega) \propto \omega^{d-1} \longrightarrow C_V \propto T^d$$
$$d = 2 \longrightarrow C_V \propto T^2$$

example: <sup>3</sup>He atoms on graphite (sub-mono layers)





at high temperatures melting of 2d-crystals





### 6.2 Heat transport

Fourier equation

$$\bigwedge^{\Lambda \vee I} \Lambda = \frac{1}{3} C v \ell$$

 $\Lambda \nabla T$ 

in general



#### dominate phonon approximation (Debye)



- summation and integration can be avoided
- in addition: linear dispersion

## 6.2 Heat Transport

SS 2022

MVCMP-1







### phonon-defect scattering

a) surfaces

SS 2022

MVCMP-1

$$\Lambda = \frac{1}{3} C v \ell \qquad \stackrel{\ell \approx d}{\longrightarrow} \qquad \Lambda \approx \frac{1}{3} C_V v d \propto T^3 \qquad \text{Casimir regime}$$





- depends on sample cross-section
- temperature dependence as expected

- roughed: mean free path factor 50 shorter
- polished: mean free path 7 cm, sample length





b) influence of point defects (elastic scattering)

→ Rayleigh scattering, since  $\lambda_{
m phonon} \gg d_{
m defect}$ 

| <i>o</i> -1 | $n_{ m p}V_{ m A}^2$ | $\left(\Delta M\right)^2$     | ~4 | ac 1.4           |
|-------------|----------------------|-------------------------------|----|------------------|
| <i>k</i> =  | $4\pi$               | $\left( \overline{M} \right)$ | q  | $\propto \omega$ |

is important at intermediate temperatures, since at low temperature q is too small and at high temperatures phonon-phonon scattering dominates



- T 10<sup>3</sup> 100 100 100 100 1 10 100 1 10 100 1 100 Temperature *T*/K
- natSi: 10% of all Si atoms have mass difference
- 253

- adding <sup>6</sup>Li reduces heat transport
  - maximum becomes rounded



## 6.2 Heat Transport



c) grain boundaries





- sapphire single crystal: 1.5 mm
- sintered  $Al_2O_3$  powder 5 ... 30  $\mu$ m

4

### Geometry of setup:

SS 2022

MVCMP-1





 $4 \times 4 \ \mu m^3$  island with gold resistors as heaters and thermometers

minimal width of bridge w < 200 nm

## 6.3 Thermal Conductivity in One-dimensional Samples

SS 2022

MVCMP-1

heat flow:  $J = \frac{1}{L} \sum \hbar \omega_{q} v_{q}$ 

length of sample all thermally excited phonons

summation ----- integration

assumptions

transmission coefficient for coupling between bath and thin bar = 1

$$\blacktriangleright \ \mathcal{D}_i^1(q) = L/2\pi, \quad q \iff \omega, \quad \frac{\partial q}{\partial \omega} \text{ cancels with } v = \frac{\partial \omega}{\partial q}$$

small temperature difference  $\Delta T$ 

 $\longrightarrow [f_{\rm h}(\omega,T) - f_{\rm c}(\omega,T)]$  can be expanded, keep only terms linear in  $\Delta T$ 

number of contributing modes

# **Quantized of Heat Conduction: Sample Geometry**



#### for given geometry

SS 2022

MVCMP-1



 $G_0 = (9.456 \times 10^{-13} \,\mathrm{W \, K^{-2}}) \,T$ 

transition roughly at 0.8 K / 
$$T_{\rm crossover} \approx \frac{h\nu}{2wk_{\rm B}} \approx 0.8 \,{\rm K}$$

expected for:

$$q_{
m th} pprox k_{
m B} T/(\hbar v) < arDelta q = rac{\pi}{w}$$



spacing between lowest lying modes