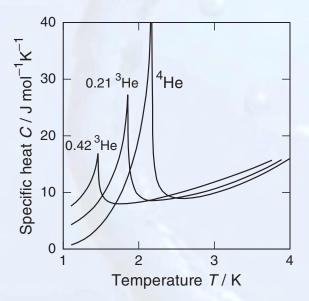
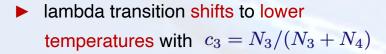
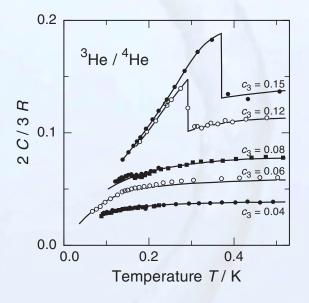
5) ³He/⁴He Mixtures

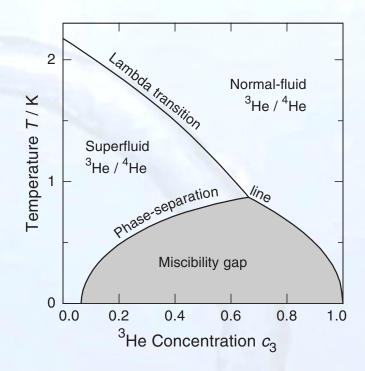


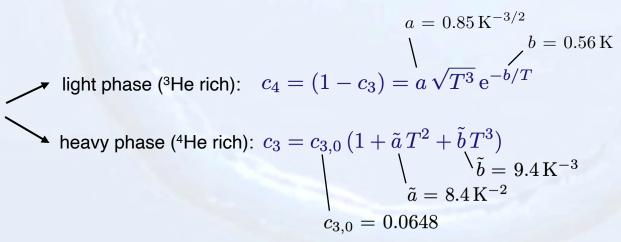

interesting for technical reasons: dilution cryostats


test for different theories: Fermi liquids, RGT, ...

first experiments 1947 observation of second sound 1950

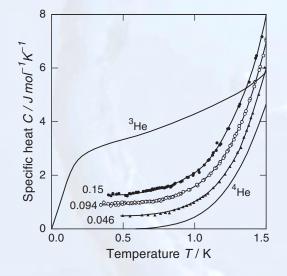
5.1 Specific heat and phase diagram



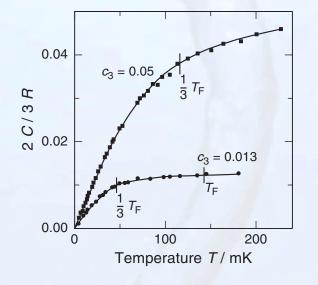

- low temperatures: jump in specific heat
 - 1st order phase transition
 - → de-mixing of ³He and ⁴He

Phase diagram

- tri-critical point T = 0.87 K, $c_3 = 0.67$
- miscibility gap is observed



dilute solutions of ³He in He-II ($c_3 < 0.15$, T < 0.5 K)


→ ⁴He: passive background fluid

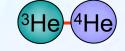
 \longrightarrow ³He: "free" atoms in a quasi vacuum and effective mass $m_3^* = 2.4 m_3$

Fermi gas
$$T_{
m F}=rac{\hbar^2}{2m_3^*k_{
m B}}\left(3\pi^2n_3
ight)^{2/3}\propto\,c_3^{2/3}$$

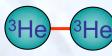
C $T > T_{\rm F}, \quad C \propto c_3 T^0 \quad (\stackrel{\frown}{=} \frac{3}{2}R)$ $T < \frac{1}{3}T_{\rm F}, \quad C \propto T$

- $ightharpoonup T_{\lambda}$ depends on c_3
- ▶ pure ³He: transition Fermi gas → Fermi liquid
- ▶ high T, dilute solution: classical gas with m*

- ▶ low T: transition classical gas → Fermi gas
- lines correspond to theory



Finite solubility of 3 He in liquid 4 He at T=0


reason: difference in zero-point motion of ³He and ⁴He

v. Waals interaction identical for ³He-³He and ³He-⁴He but: larger zero-point motion of ³He weakens the bonding

stronger effective binding for

compared to

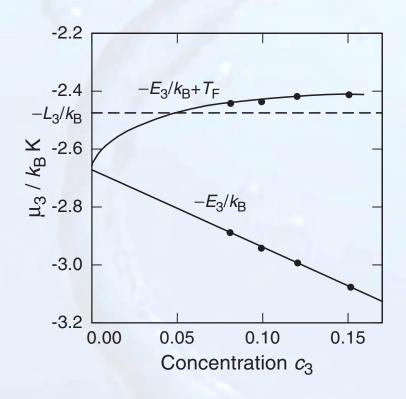
in equilibrium on finds

$$\mu_{3,
m d}(T,c_{3,
m d}) = \mu_{3,
m c}(T,c_{3,
m c}) \ igg ert$$
 dilute concentrated

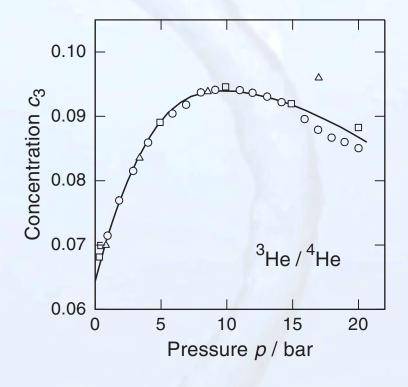
concentrated phase

dilute phase

- $T = 0 \longrightarrow c_3 = 1$ for concentrated phase (pure ³He)
- ▶ necessary energy to bring one ³He atom into "vacuum" $L_3(T=0)$


$$\mu_{3,c}(0,1) = \mu_3(0) = -L_3(0) = -2.473\,\mathrm{K}$$
 latent heat

- \blacktriangleright dilute phase: $E_3 = -\mu_{3,\mathrm{d}}(0,0)$ \longrightarrow binding energy $c_{3,\mathrm{d}} \to 0$
- with increasing concentration the effective binding energy for ³He is reduced because of the Pauli principle \longrightarrow Fermi gas: $E_{\rm F} = k_{\rm B}T_{\rm F}(c_3)$



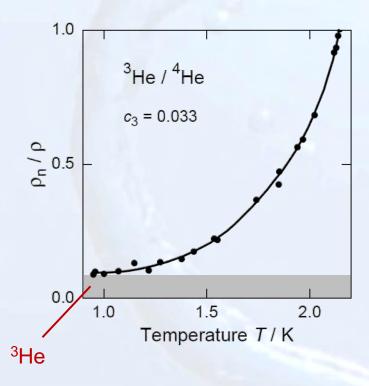
equilibrium concentration at T = 0

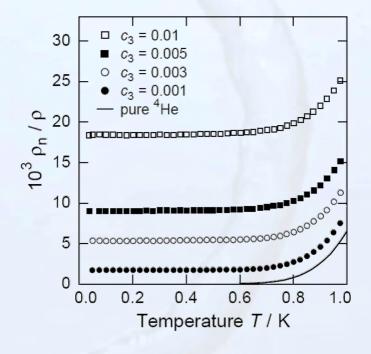
$$-L_3(0) = -E_3(0, c_3) + k_B T_F(c_3)$$

pressure dependence

- \triangleright calculation of $E_3(0,c_3)$ is not trivial
 - ---- Bardeen, Baym, Pines model

- maximum at 8.7 bar
- ightharpoonup concentration $c_3 = 0.096$


5.2 Normalfluid Component



determination of $Q_n \longrightarrow$ Andronikasvili-type experiment

$$arrho_{
m n}=arrho_{
m n,4}+arrho\,rac{m_3^*}{m_4}\,c_3$$
 pure He-II const

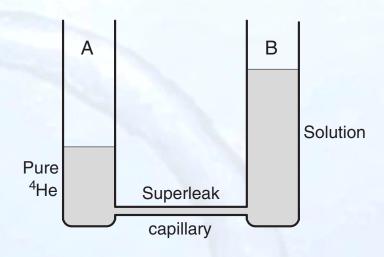
15 mica sheets4 cm diameter190 μm spacing

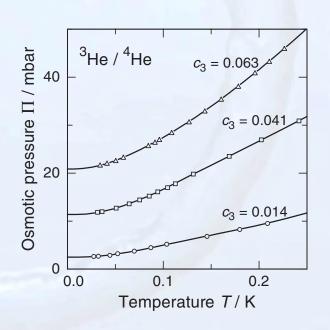
$$\rho_{\rm n}(T \to 0) = {\rm const} \propto c_3$$

5.2 Normalfluid Component

Osmotic pressure

- ► ⁴He flows to solution to thin the ³He concentration
- ▶ ³He is blocked
- osmotic pressure


van't Hofft law ($T \gg T_{\rm F}$, classical regime)

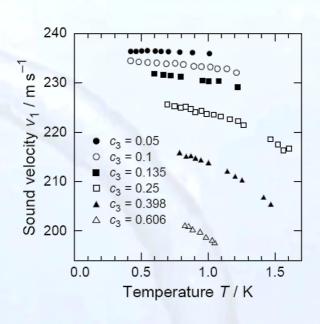

$$\Pi = n_3 k_{\rm B} T \propto c_3 T$$

 $T \ll T_{
m F}$, degenerate Fermi gas

$$\Pi=rac{2}{5}n_3k_{
m B}T_{
m F}\propto c_3^{5/3}={
m \ const}$$
 depends on c_3

transition from FG to classical gas

5.3 Sound Propagation


First sound

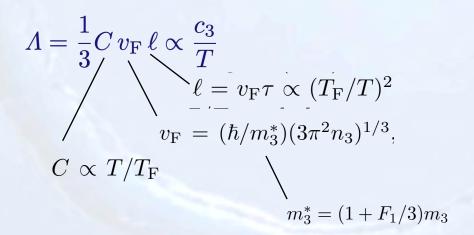

$$v_1^2 = \left(\frac{\partial p}{\partial \varrho}\right)_{S,c_3} \left[1 + \frac{\varrho_s}{\varrho_n} \left(\frac{\partial \varrho}{\partial c_3} \, \frac{c_3}{\varrho} \right)^2 \right]$$

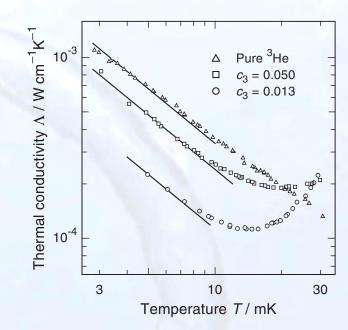
Second sound

$$v_2^2 = \frac{\varrho_s}{\varrho_n} \left[\overline{S} \left(\frac{\partial T}{\partial S} \right)_{\varrho, c_3} + c_3^2 \frac{\partial (\mu_3 - \mu_4)}{\partial c_3} \right] \left[1 + \frac{\varrho_s}{\varrho_n} \left(\frac{\partial \varrho}{\partial c_3} \frac{c_3}{\varrho} \right)^2 \right]^{-1}$$

$$\overline{S} = S_{4,0} - \frac{k_B}{m_4} \left[c_3 + \ln(1 - c_3) \right] + \frac{k_B}{m_3} c_3$$

5.4 Transport Properties




Thermal transport (rather complex)

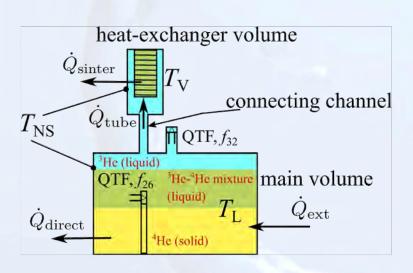
high Temp.: Q_n flow leads to 3 He concentration gradient

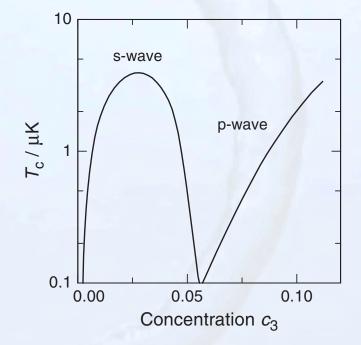
- → ³He atoms diffuse back
- \longrightarrow ³He form scattering centers for $\varrho_{\rm n}$
- reduction of heat transport

low Temp.: 3He atoms from FG

5.5 Search For a Superfluid Phase of ³He in Mixture

very interesting: 3 superfluid phases in the same container \longrightarrow ⁴He, ³He, and dilute ³He


Problem: ³He/⁴He mixtures are hard to cool because of Kapitza resistance


1

acoustic mismatch hinders cooling

new initative:

- → cooling by melting of ⁴He crystal
- \rightarrow lowest temperature so far 90 μ K

