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4.6 Macroscopic Quantum Effects

macroscopic wave function

3 x 3 matrix

18 degrees of freedom

i) quantization of circulation

4He  circulation is quantized

3He  behavior is more complicated

3He-A: circulation is not quantized under ideal conditions, 
which means without external influences

126 4 Superfluid 3He

curlvs =
!

2m3r
l̂ ·

(
∂ l̂

∂φ
× ∂ l̂

∂r

)
, (4.19)

where m3 is the mass of a 3He atom. From this, it follows that curlvs vanishes
only if the texture of l is uniform. Therefore, 3He-A is only irrotational under
ideal circumstances. When l changes its direction as a function of position,
continuous vortices may be formed, and the fields vs(r) and l(r) have no
singularities.

It is remarkable that under ideal conditions – without external influences –
the circulation in 3He-A is not quantized. This is possible because a change
in the phase can be compensated for by a change in the order parameter l.

3He-B

In the B phase, the situation is similar to that in helium II. The superflow
velocity is, according to

vs =
!

2m3
∇ϕ (4.20)

directly related to the phase gradient. The flow is therefore expected to be
irrotational. As in helium II, quantized circulation of the superfluid compo-
nent exists in 3He-B in vessels with multiply connected regions. This has
been demonstrated in an experiment similar to those carried out by Vinen
(see Sect. 2.4.2) in which the circulation around a thin vibrating wire was
measured. The result is shown in Fig. 4.18. Three different values of the cir-
culation were observed depending on the angular velocity of the vessel. The
grey tinted regions indicate that at these angular frequencies the circulation
was instable. The quantum of circulation in 3He-B is given by

κ3 =
h

2m3
. (4.21)
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Fig. 4.18. Circulation κ in units of
h/(2m3) as a function of the angular ve-
locity in 3He-B. Within the grey tinted
regions no stable circulation was ob-
served [184]
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126 4 Superfluid 3He

curlvs =
!

2m3r
l̂ ·

(
∂ l̂

∂φ
× ∂ l̂

∂r

)
, (4.19)

where m3 is the mass of a 3He atom. From this, it follows that curlvs vanishes
only if the texture of l is uniform. Therefore, 3He-A is only irrotational under
ideal circumstances. When l changes its direction as a function of position,
continuous vortices may be formed, and the fields vs(r) and l(r) have no
singularities.

It is remarkable that under ideal conditions – without external influences –
the circulation in 3He-A is not quantized. This is possible because a change
in the phase can be compensated for by a change in the order parameter l.

3He-B

In the B phase, the situation is similar to that in helium II. The superflow
velocity is, according to

vs =
!

2m3
∇ϕ (4.20)

directly related to the phase gradient. The flow is therefore expected to be
irrotational. As in helium II, quantized circulation of the superfluid compo-
nent exists in 3He-B in vessels with multiply connected regions. This has
been demonstrated in an experiment similar to those carried out by Vinen
(see Sect. 2.4.2) in which the circulation around a thin vibrating wire was
measured. The result is shown in Fig. 4.18. Three different values of the cir-
culation were observed depending on the angular velocity of the vessel. The
grey tinted regions indicate that at these angular frequencies the circulation
was instable. The quantum of circulation in 3He-B is given by

κ3 =
h

2m3
. (4.21)
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Fig. 4.18. Circulation κ in units of
h/(2m3) as a function of the angular ve-
locity in 3He-B. Within the grey tinted
regions no stable circulation was ob-
served [184]
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3He-B: circulation is quantized

126 4 Superfluid 3He
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h/(2m3) as a function of the angular ve-
locity in 3He-B. Within the grey tinted
regions no stable circulation was ob-
served [184]

► Vinen-type experiment

► 1 rad/s = 0.16 revolutions /s 

126 4 Superfluid 3He
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in the phase can be compensated for by a change in the order parameter l.

3He-B

In the B phase, the situation is similar to that in helium II. The superflow
velocity is, according to
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∇ϕ (4.20)

directly related to the phase gradient. The flow is therefore expected to be
irrotational. As in helium II, quantized circulation of the superfluid compo-
nent exists in 3He-B in vessels with multiply connected regions. This has
been demonstrated in an experiment similar to those carried out by Vinen
(see Sect. 2.4.2) in which the circulation around a thin vibrating wire was
measured. The result is shown in Fig. 4.18. Three different values of the cir-
culation were observed depending on the angular velocity of the vessel. The
grey tinted regions indicate that at these angular frequencies the circulation
was instable. The quantum of circulation in 3He-B is given by
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locity in 3He-B. Within the grey tinted
regions no stable circulation was ob-
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experimental problem: 
rotation at very low temperatures

up to 3 revolutions / s

ROTA Cryostat
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Quantized Vortices (structure much more complicated as in He-II)

3He-A: 

a) with uniform texture and orbital field                vortices with normal-fluid hard core 
extended soft region    
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coherence length

b) if    can adjust freely one finds continuous vortices with n = 2 without singularity  (no hard core)
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Fig. 4.20. NMR spectra of 3He-A (a) at
rest and (b) under rotation. The lowest
curve shows the spectrum vertically mag-
nified by a factor 50 [190]

Experiments indicate that vortices in 3He-A are formed only above a crit-
ical velocity of rotation, as in helium II. The critical angular velocity depends
on the size of the container, being about 0.1 rad s−1 for a cylindrical vessel
with diameter 2.5 mm. After the critical speed has been exceeded, continu-
ous vortices enter the liquid within a few seconds. In contrast, the creation
of singular vortices in helium II may take several minutes [187].

3He-B

As we have seen above, the superflow velocity in 3He-B is fully determined by
the gradient of the phase vs = (!/2m3)∇ϕ and the circulation of the super-
flow is quantized. Because curl vs = 0, the vortices in 3He-B exhibit always
a core as in helium II. Prior to experiments, it was generally assumed that
vortices in 3He-B would be very similar to those occurring in helium II. How-
ever, the extended hard core of the vortices in 3He-B permits the formation
of different pairing states inside the core, and the core need not necessarily
be a normal-fluid. In fact, two different vortex structures with different cores
have been identified experimentally. At high pressures and high tempera-
tures one finds an axially symmetrical vortex with 3He-A in the core. At low
pressures a nonaxially symmetrical double-core vortex structure composed of
two half-quantum vortices is formed. A schematic illustration of these vortex
structures is shown in Fig. 4.21. Since the vortices in 3He-B have no soft
core, the overall core extension is much smaller than that of the vortices in
the A phase.

Investigation of vortices in 3He-A with NMR

frequency shift because of localized 
spin waves in core!

cryostat at rest

cryostat rotating

container diameter  2.5 mm

0.1 rad/s
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3He-B: only vortices with hard core                 …

depends on pressure

c) single vortices with A phase in core

d) double vortices with two half-quantum of circulation and normal-fluid core

these vortices exist in distinct parts of the phase diagram
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3He-B: phase diagram under rotation spin waves resonances (collision-less)

under rotation            larger spacing
because additional term in free energy 

first order phase transition
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3He-B: phase diagram under rotation spin waves resonances (collision-less)

4.6 Macroscopic Quantum Effects 131
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Fig. 4.23. Spin-wave resonances observed
in NMR experiments in 3He-B, (a) at rest
and (b) under rotation [191]

The phase-transition temperature is independent of the speed of rotation
but shows hysteresis consistent with the interpretation of a first-order phase
transition.
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Fig. 4.24. Frequency shift ∆ω = (ω − ωL) of different spin wave modes in 3He-B
normalized by Ω2

B/2ωL as a function of the reduced temperature: (a) cryostat at
rest and (b) cryostat rotating. Filled and unfilled symbols correspond to forward
(Ω ↑↑ B) and reverse (Ω ↑↓ B) rotations, respectively. The experiments were
performed at a pressure of 29.3 bar and in a magnetic field of B = 28.4 mT. Under
these conditions the Larmor frequency is ωL = 922.5 kHz [191]

4.6.4 Macroscopic Quantum Interference – Josephson Effect

Perhaps the most intriguing property of a macroscopic quantum system is the
potential for quantum interference on a macroscopic scale. In Sect. 2.4.3, we
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4.6.4 Macroscopic Quantum Interference – Josephson Effect

Perhaps the most intriguing property of a macroscopic quantum system is the
potential for quantum interference on a macroscopic scale. In Sect. 2.4.3, we

at rest

hysteresis is observed

1st order transition
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ii) Josephson effects

µ3
60 nm

4225 holes in

50 nm thick menbrane

132 4 Superfluid 3He

have already discussed the occurrence of the Josephson effect in helium II.
Although corresponding experiments in 3He must be performed at much
lower temperatures it is somewhat easier to realize quantum interference in
superfluid 3He than in helium II. A necessary condition for quantum-current
oscillations to exist in superfluids is that two samples of a superfluid are sep-
arated by such a region that the wave functions of the two parts are only
weakly coupled. If such a weak link is realized by a small aperture, its diam-
eter and length must be comparable to the coherence length, which is several
orders of magnitude larger in superfluid 3He than in helium II because at
low temperatures (T ! Tc) the coherence length in superfluid 3He is about
65 nm.

The existence of quantum interference between two samples of super-
fluid 3He has been demonstrated in several beautiful experiments in the last
few years. The first of two examples we shall briefly discuss, is an experiment
in which the Josephson frequency was measured as a function of the pressure
difference between two samples of superfluid 3He [192]. The weak link was
realized by an array of 4225 holes, each 100 nm in diameter and separated
by 3µm. The holes were etched in a silicon nitride membrane whose thick-
ness was only 50 nm. Since the phase of the wave function of the superfluid
was coherent through all the holes, the array behaved as a single aperture
with the current being the sum of that through all 4225 holes. A schematic
drawing of the experimental cell is shown in Fig. 4.25.

3He

Aluminum
washer

Si chip attached Microaperture array

Stiff membrane

Soft membrane

Electrode
dc SQUID input coil

to stiff membrane

Fig. 4.25. Schematic sketch of the experimental cell used to measure coherent
quantum oscillations between two weakly coupled reservoirs of 3He-B. After [192]

The inner cell consisted of a 140 µm thick aluminum washer with one
stiff and one very soft diaphragm on the lower and upper side, respectively.
A silicon chip containing the silicon nitride membrane with the weak link
was glued over a small hole in the stiff diaphragm. The upper diaphragm
was metalized on the outside with a thin bilayer of lead and indium. The
soft diaphragm was used in the experiment to apply pressure and to detect
the oscillating mass current. The pressure on the liquid present between the
two diaphragms could be varied by applying a force on the upper diaphragm
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4.6 Macroscopic Quantum Effects 133

with an electric field between the diaphragm and the fixed electrode. The fre-
quency of the resulting current oscillations was monitored inductively with a
resolution of 10−14 mHz−1/2 by a dc SQUID displacement sensor.7 As men-
tioned in Sect. 2.4.3, the Josephson frequency is given by ωJ = m3 ∆p/("!).
In Fig. 4.26a, the frequency of the quantum oscillations is shown as a func-
tion of the pressure difference. In agreement with the expression for ωJ, the
observed frequency is independent of temperature and increases linearly with
the pressure difference. The dc Josephson effect – the phase-current relation
without pressure drop across the aperture – has also been investigated in the
same apparatus. According to (2.84), the mass current density is expected to
show the sinusoidal dependence j = jc sin(∆ϕ) on the phase difference, where
jc denotes the critical current for the flow through the weak link. The data
shown in Fig. 4.26b are in almost perfect agreement with this prediction.
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Fig. 4.26. (a) Frequency of the quantum oscillations as a function of the pressure
difference between two weakly coupled reservoirs of 3He-B at different temperatures
[192]. (b) Mass current density between these reservoirs versus phase difference ∆ϕ
between the two systems [193]. These data were obtained at T = 0.85 Tc

Using two arrays of 4225 holes in a closed loop with area A, the analogue
of a double-path interference experiment has been performed in 3He-B [194].
A schematic sketch of the experimental setup is shown in Fig. 4.27a. Rotating
this quantum interferometer at an angular velocity Ω leads to modulation of
the critical current given by

jc = 2j0
c

∣∣∣∣cos
(

π
2Ω ·A

κ3

)∣∣∣∣ , (4.22)

where A represents the area vector of the loop and κ3 = h/(2m3) the quan-
tum of circulation of superfluid 3He. The variation of the rotation flux Ω ·A
7 A SQUID is a device that allows very sensitive measurements of magnetic flux

changes. Its working principle is discussed in Sect. 10.4.4.
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same apparatus. According to (2.84), the mass current density is expected to
show the sinusoidal dependence j = jc sin(∆ϕ) on the phase difference, where
jc denotes the critical current for the flow through the weak link. The data
shown in Fig. 4.26b are in almost perfect agreement with this prediction.
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Fig. 4.26. (a) Frequency of the quantum oscillations as a function of the pressure
difference between two weakly coupled reservoirs of 3He-B at different temperatures
[192]. (b) Mass current density between these reservoirs versus phase difference ∆ϕ
between the two systems [193]. These data were obtained at T = 0.85 Tc

Using two arrays of 4225 holes in a closed loop with area A, the analogue
of a double-path interference experiment has been performed in 3He-B [194].
A schematic sketch of the experimental setup is shown in Fig. 4.27a. Rotating
this quantum interferometer at an angular velocity Ω leads to modulation of
the critical current given by

jc = 2j0
c

∣∣∣∣cos
(

π
2Ω ·A

κ3

)∣∣∣∣ , (4.22)

where A represents the area vector of the loop and κ3 = h/(2m3) the quan-
tum of circulation of superfluid 3He. The variation of the rotation flux Ω ·A
7 A SQUID is a device that allows very sensitive measurements of magnetic flux

changes. Its working principle is discussed in Sect. 10.4.4.
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show the sinusoidal dependence j = jc sin(∆ϕ) on the phase difference, where
jc denotes the critical current for the flow through the weak link. The data
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Using two arrays of 4225 holes in a closed loop with area A, the analogue
of a double-path interference experiment has been performed in 3He-B [194].
A schematic sketch of the experimental setup is shown in Fig. 4.27a. Rotating
this quantum interferometer at an angular velocity Ω leads to modulation of
the critical current given by
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where A represents the area vector of the loop and κ3 = h/(2m3) the quan-
tum of circulation of superfluid 3He. The variation of the rotation flux Ω ·A
7 A SQUID is a device that allows very sensitive measurements of magnetic flux

changes. Its working principle is discussed in Sect. 10.4.4.
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DC-SHeQUID: Superfluid He QUantum Interference Devices
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DC-SHeQUID in Earth rotation

But the healing length is a function of tempera-
ture. Within 1 mK of the transition temperature Tλ,
it approaches 50 nm, a feasible size scale for a
nanoaperture array. High-resolution thermometers
developed for space missions10 allow the system to
be maintained at a precisely fixed temperature near
Tλ. And so, in 2001, researchers at NASA’s Jet Propul-
sion Laboratory at Caltech reported hydrodynamic

signatures11 consistent with a sin(∆ϕ) current–phase
relation in superfluid 4He. Josephson oscillations in
4He were seen in 2005 by the Berkeley group.12

It turns out that another type of coherent oscil-
lation occurs at the same frequency as the Josephson
oscillation, and it allows a 4He SHeQUID to operate
even at temperatures for which the healing length
is much smaller than the aperture size. One of the
defining properties of a superfluid is that it flows
without dissipation up to some critical velocity. For
flow in a channel of micron dimensions, dissipation
sets in due to the stochastic formation of quantized
vortices. Once a vortex forms on one side of the
channel, it moves across the channel by the same
mechanism that causes a spinning ball to follow a
curved trajectory. As Philip Anderson has shown, a
vortex’s traversal of the channel removes a discrete
amount of kinetic energy from the fluid flow and
causes the phase shift along the channel to drop by
2π. Those discrete 2πphase slips were first observed
in 1985 by Avenel and Varoquaux.13

Now imagine applying a constant pressure dif-
ference across a channel connecting two superfluid
reservoirs. In the strongly coupled regime (a channel
much wider than the healing length), the force
causes an accelerating flow in one direction. When
the flow reaches some critical velocity, it induces a
phase slip, and the velocity abruptly decreases. The
pressure difference continues to increase the veloc-
ity, and the process is repeated. The phase slips take
place with an average frequency ∆µ/h, identical to
the frequency of Josephson oscillations in the weakly
coupled regime. Because the phase slips are abrupt,
phase-slip oscillations have a sawtooth profile rather
than a smooth sinusoidal shape. A continuous tran-
sition between the two types of oscillation occurs in
the intermediate regime, in which the current–phase
relation is neither linear nor purely sinusoidal.

The first observation of coherent phase-slip 
oscillations was really quite unexpected. Earlier 
experiments had shown that, due to the stochastic
nucleation of the phase slips, superfluid 4He in a sin-
gle aperture in the strongly coupled regime does not
actually exhibit such an oscillation. So why should
an array of apertures exhibit any phase-slip oscilla-
tions at all, let alone coherent ones? But as it turns
out, they do, as was discovered serendipitously by
Emile Hoskinson of the Berkeley group.12 Having
constructed a device intended for use with 3He, he
first tested it with the less expensive 4He. Quantum
whistles were audible at temperatures near the tran-
sition temperature, but not so near as to allow
Josephson oscillations. The whistles were found to
be due to phase-slip oscillations, although the mech-
anisms that remove the stochastic fluctuations and
lock the apertures together remain to be under-
stood. To compound the mystery, at lower temper-
atures further into the strongly coupled regime, the
phase slips seem to lose their synchronicity, and the
quantum whistle’s amplitude decreases.

Helium-4 interferometers
Not only are the 4He phase-slip oscillations coherent
among the many apertures in an array, they also are
coherent between two macroscopically separated 
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Interferometers
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Figure 3. A superfluid gyroscope. (a) A superfluid interferometer is
placed in Earth’s rotating frame with its area vector A at some angle
with respect to Earth’s rotation vector ΩE. The quantum phase shift
across the device is proportional to the so-called rotation flux, ΩE · A,
so by varying the direction of A one can measure ΩE. (b) The modulation
in the oscillation amplitude, experimentally observed here with a
helium-3 interferometer, has the form of the absolute value of a cosine.
(Adapted from ref. 9.)
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Figure 4. Earth’s rotation measured with a helium-4 interferometer
at several temperatures ranging from 0.3 mK below the superfluid
transition temperature (lowest curve) to 12 mK below (highest
curve). The modulation height increases with decreasing 
temperature because of the increase in superfluid density. The 
device is most sensitive at the lowest temperatures studied.
(Adapted from ref. 14.)
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was realized by reorienting the normal of the loop plane with respect to
the rotation of the Earth. The resulting interference pattern is depicted in
Fig. 4.27b. The plot shows the critical current as a function of (2Ω ·A)/κ3.
The solid line represents the prediction of (4.22).
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Fig. 4.27. (a) Schematic drawing of the setup used in the two-path quantum-
interference experiment with 3He-B. (b) Critical current in the superfluid quantum-
interference gyroscope as a function of (2Ω ·A)/κ3 [194]

4.7 Normal-Fluid Density – Quasiparticle Scattering

Many properties of superfluid 3He can be described by a system of two in-
terpenetrating fluids, namely the fluid of thermal excitations or normal-fluid
component and the pair condensate or superfluid component. In helium II, the
normal-fluid density is determined by phonon and roton excitations. In super-
fluid 3He, thermally excited Bogoliubov quasiparticles make up the normal-
fluid density. In this section, we briefly discuss some specific aspects related
to the normal-fluid density such as the specific heat below Tc.

4.7.1 Normal-Fluid Density

The normal-fluid density in superfluid 3He is due to thermally excited qua-
siparticles. The quasiparticle excitation spectrum is given by

Ek =
√

η2
k + ∆2 , (4.23)

where ηk represents the kinetic energy of quasiparticles relative to the Fermi
level. The normal-fluid density, taking into account Fermi-liquid corrections,
has been calculated as

perfect agreement with theoretical expectations

normal vector of loop

angular velocity of rotating system (earth)
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General expression from Landau’s Fermi liquid theory

normalfluid density without Fermi liquid correction

normalfluid density                 thermal excitations of quasi-particles

3He-B
temperature dependence given by Yosida function 
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↔
!n =

m∗

m

(
↔
1 +

1
3

F1

↔
!n,0

!

)−1
↔
!n,0 . (4.24)

Here, F1 denotes the Landau parameter introduced in Sect. 3.2 and
↔
!n,0 the

normal-fluid density tensor without Fermi-liquid corrections. The latter is
determined by the temperature-dependent Yosida function Y0(k̂, T ), which
is a measure of the current response of thermal excitations at the point k̂ on
the Fermi surface. For the isotropic BW state this function is independent
of k̂ and we can write Y0(k̂, T ) = Y0. Hence the normal-fluid density in the
BW state is isotropic and can be expressed by

!n = !
(1 + F1/3) Y0

1 + F1Y0/3
. (4.25)

According to the temperature dependence of the Yosida function, !n increases
monotonically for T → Tc, and vanishes exponentially fast for T → 0.

In the anisotropic ABM state the situation is obviously more complicated
because the normal-fluid density depends on the direction of motion relative
to the orbital angular momentum l. It is an axially symmetric tensor, oriented
along l̂. Near Tc, the parallel and perpendicular components can be written
as

!n,⊥ − ! = 2!n,‖ = −7
5

ζ(3)
m

m∗ !

(
∆m

πkBTc

)2

. (4.26)

In the low-temperature limit the anisotropy of the ABM state is even
stronger. One obtains for the two independent components

!n,‖ = π2 m

m∗ !

(
kBTc

∆m

)2

, (4.27)

and

!n,⊥ =
7
15

π4 m

m∗ !

(
kBTc

∆m

)4

. (4.28)

This means that the normal-fluid density obeys a power-law temperature de-
pendence, because of the two gap nodes, rather than an exponential decrease
as for the BW state.

4.7.2 Specific Heat

The specific heat of superfluid 3He is determined by thermally excited quasi-
particles, just as in 3He-N. However, the quasiparticle spectrum in the super-
fluid state differs from that in normal-fluid 3He because of the presence of the
energy gap. Due to the isotropic energy gap ∆B of the B phase, the specific
heat tends to zero exponentially as T → 0. The low-temperature specific heat
of 3He-B is given by

isotropic independent of 
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The specific heat of superfluid 3He is determined by thermally excited quasi-
particles, just as in 3He-N. However, the quasiparticle spectrum in the super-
fluid state differs from that in normal-fluid 3He because of the presence of the
energy gap. Due to the isotropic energy gap ∆B of the B phase, the specific
heat tends to zero exponentially as T → 0. The low-temperature specific heat
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temperature dependent scalar!

► monotonic increase for 
► disappears exponentially for 
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Fig. 4.7. Mass flow density js of
3He-B through 1000 thin parallel
capillaries with a diameter of 0.8 µm
and a length of 10µm as a function
of the pressure gradient ∆p at dif-
ferent temperatures [157]

In contrast, the flow of 3He-B is nearly constant, similar to the behavior of
helium II. This can be explained by the frictionless flow of the superfluid com-
ponent, which is limited by a critical velocity. It is remarkable that even at
the lowest pressures a significant mass flow occurs. With decreasing temper-
ature the mass flow increases, as expected from the two-fluid model, because
the ratio !s/! becomes larger upon cooling. In addition, the temperature
dependence of js is influenced by the variation of the critical velocity.

4.2.2 Normal-Fluid Density

The central tenet of the two-fluid model is that the properties of the super-
fluid can be described in terms of interpenetrating normal-fluid and superfluid
components. Numerous studies of superfluid 3He have been performed to de-
termine the densities of these two components. For example, we shall discuss
in Sect. 4.8 the determination of !s/! by fourth-sound measurements.
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Fig. 4.8. Normalized normal-fluid den-
sity !n/! of 3He-B as a function of the
reduced temperature T/Tc [158]
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3He-A

close to Tc          can approximated by: very low temperatures:

parallel to orbital momentum 

perpendicular to orbital momentum 

much more complicated situation!

Specific heat

3He-B

3He-A for                               and 
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CB(T ) =
√

2π D(EF) kB∆B

(
∆B

kBT

)3/2

e−∆B/(kBT ) , (4.29)

where D(EF) represents the density of states at the Fermi surface.
The behavior of 3He-A is quite different, because the energy gap of

the A phase is zero along the preferred direction l̂. At low temperatures
T " ∆m/kB, the majority of the quasiparticles are thermally excited in the
small region ∆k ≈ (T/∆m) kF on the Fermi surface near k̂= ± l̂. The result-
ing specific heat can be expressed by

CA(T ) =
7
5

π2

(
T

∆m

)2

CN(T ) ∝ T 3 . (4.30)

Here, CN denotes the specific heat of the normal-fluid phase 3He-N, which is
given by (3.37). Therefore, the specific heat of the A phase at low tempera-
tures is expected to vary as T 3 rather than exponentially.

4.7.3 Quasiparticle Scattering

For many properties, in particular the transport properties, collisions among
quasiparticles are important. We therefore make a few remarks on this subject
here. We have to distinguish between the mutual scattering of quasiparticles
and scattering processes at boundaries.

Let us consider first the mutual scattering of quasiparticles. In principle,
this process is not very different from that occurring in the normal-fluid phase
3He-N, but one has to take into account the differences in the excitation
spectrum of the quasiparticles in the two states. Near Tc, the quasiparticle
collision rate – or relaxation rate – in the B phase is given by the same rate
as for 3He-N, namely by (3.17). In the low excitation-density limit, T " ∆B,
the quasiparticle relaxation rate is proportional to the number of excitations
available for scattering processes. Therefore, the relaxation rate in the low-
temperature limit T " Tc can be approximated by [156]

τ−1
B = τ−1

N

3√
2π

W0

(
∆B

kBT

)3/2

e−∆B/(kBT ) , (4.31)

where τ−1
N is the quasiparticle collision rate in the normal-fluid state and W0

is a dimensionless parameter that depends on the quasiparticle scattering
amplitude in 3He-N.

In the A phase, the calculation of the relaxation rate is, in general, more
complicated because energy and angular integrations are not separable. How-
ever, at low temperatures (T " ∆m/kB) only quasiparticles with momenta k
in the neighborhood of the two gap nodes, are thermally excited, and collide
mainly with quasiparticles of the same kind. The energy gap of all these qua-
siparticles is much smaller than the thermal energy. Therefore, their contri-
bution to the relaxation rate is approximately the same as in the normal-fluid
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m∗

m
=

(
1 +

1
3

F1

)
(3.36)

for the effective mass [132]. The theoretical treatment of specific heat, sound
velocity, susceptibility and transport properties in the Landau model leads
to the same temperature dependencies as for a Fermi gas, which we have dis-
cussed in Sect. 3.1.3. The following equations contain the numerical correc-
tions computed from the Landau Fermi-liquid theory for the different quan-
tities.

For the specific heat, one finds the expression

C =
m∗

m
CFG , (3.37)

and for the sound velocity the relation

v2
1 =

p2
F

3m2

1 + F0

1 + 1
3F1

. (3.38)

In the expression for the magnetic susceptibility, the magnetic exchange in-
teraction enters as well as the effective mass. One obtains

χ =
m∗

m

(
1

1 + 1
4G0

)
χFG . (3.39)

Here, the quantities CFG and χFG represent the specific heat and the suscep-
tibility of an ideal Fermi gas.

The specific heat is higher than that of an ideal Fermi gas since the den-
sity of states at the Fermi surface is enhanced by the interaction. This is
expressed by the ratio m∗/m > 1. In principle, this is also true for the mag-
netic susceptibility, which is also proportional to the density of states D(EF)
at the Fermi surface, but it also contains the factor 1/(1 + 1

4G0) that re-
sults from the spin-dependent exchange interaction. The experimental value
is G0 = −2.8. The negative sign indicates that because of the exchange in-
teraction the spins tend to orient parallel to each other, in contrast to the
antiparallel orientation expected from Fermi statistics. If the magnitude of
the exchange interaction were larger by a factor of two, then 1

4G0 < −1, and
the ground state of liquid 3He would be ferromagnetic.

The Landau theory is relevant for many different properties of liquid 3He.
For example, one finds very good agreement with transport properties such
as viscosity, thermal conductivity and self-diffusion coefficient including their
dependence on pressure. To obtain the Landau parameters one uses numer-
ous experimental results adjusting the parameters to obtain as good a fit
as possible. The first few coefficients of the expansion at different pressures,
obtained in this way, are listed in Table 3.2. Using these values, we find for
the specific heat and the sound velocity CV = 2.78 γT and v = 180 m s−1,
respectively, in excellent agreement with the experimental values listed in
Table 3.1.
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4.8 Collective Excitations － Sound Propagation 

a) 2nd Sound

3He-B

as in case of He-II

138 4 Superfluid 3He

4.8.1 Sound Propagation

Sound propagation in superfluid 3He is rather complex, because it does not
only combine the manifold of sound modes of helium II and normal-fluid 3He,
but also exhibits a number of phenomena that have no analogue in either
fluid. These special modes are a direct consequence of the broken relative
symmetries in superfluid 3He.

In general, the two-fluid hydrodynamics discussed in Sect. 2.2.1 for he-
lium II provides a good description for second, third and fourth sound in
3He-B. The anisotropic A and A1 phases require a more complex theoretical
treatment. In this section, we will present a few experimental results that
are characteristic of two-fluid sound modes in superfluid 3He. A thorough
discussion of the two-fluid hydrodynamics of the superfluid phases of 3He,
however, is beyond the scope of this introduction.

Second Sound

The occurrence of second sound is one of the most characteristic features
of superfluids, because it is a direct consequence of broken gauge symmetry
of the superfluid order parameter. For 3He-B the velocity of second sound
is given by (2.43). As an example, we show in Fig. 4.28 the temperature
dependence of the velocity of second sound obtained in the B phase at a
pressure of 21.3 bar. The solid line represents the prediction of the two-fluid
model, which agrees with the measured data reasonably well. However, since
the entropy density S carried by the normal-fluid component is reduced in
3He by a factor of T/TF in comparison with 4He, v2 turns out to be about
three orders of magnitude smaller than the Fermi velocity vF.

As a consequence of the broken relative symmetry of spin rotations and
gauge transformations, a propagating ‘second sound’ mode exists in 3He-A1

that is a combination of an entropy-density wave and a spin-density wave.
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Fig. 4.28. Velocity of second sound in
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► v2 just  a few cm/s

► reduction             in  

3He-A1
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Since only one spin orientation with respect to the magnetic field exists in
3He-A1, the counterflow of normal and superfluid components involved in
second-sound propagation must also carry spins. For the propagation in the
direction of the magnetic field, the velocity of second sound in 3He-A1 is
given, to a good approximation, by [199]

v2 =
γ!

2m∗

√
"

χ

"s,⊥
"n,⊥

, (4.33)

where χ denotes the magnetic susceptibility and m∗ the effective mass of the
quasiparticles. Figure 4.29 shows the result of a measurement of v2 in 3He-A1.
The experiment was performed at the melting pressure in a magnetic field
of 0.85 T, conditions such that the A1 phase exists over a temperature range
of 50µK. The second-sound waves were excited and detected via porous-
membrane transducers (5 µm pore diameter) that were driven and monitored
capacitively. Since the porous membranes only move the normal-fluid com-
ponent, it is possible to generate a counterflow of normal-fluid and superfluid
density in the liquid.
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The second-sound velocity in 3He-A1 is much larger than in 3He-B. This is
because second sound in 3He-A1 is not only an entropy-density wave but also
a spin-density wave. In fact, the velocity of the combined mode is comparable
to that of a spin wave in 3He. The temperature dependence of the velocity of
second sound is determined by that of the superfluid density. The solid line
corresponds to the known behavior of "s(T ) ∝ (1−T/TA1) and is in very good
agreement with the data. Second sound was not detectable near TA1 because
either the coherence length exceeded the pore size or the critical velocity
dropped below the superfluid velocity within the pores in this temperature
range.
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agreement with the data. Second sound was not detectable near TA1 because
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not only entropy wave but also 
spin wave

138 4 Superfluid 3He

4.8.1 Sound Propagation

Sound propagation in superfluid 3He is rather complex, because it does not
only combine the manifold of sound modes of helium II and normal-fluid 3He,
but also exhibits a number of phenomena that have no analogue in either
fluid. These special modes are a direct consequence of the broken relative
symmetries in superfluid 3He.

In general, the two-fluid hydrodynamics discussed in Sect. 2.2.1 for he-
lium II provides a good description for second, third and fourth sound in
3He-B. The anisotropic A and A1 phases require a more complex theoretical
treatment. In this section, we will present a few experimental results that
are characteristic of two-fluid sound modes in superfluid 3He. A thorough
discussion of the two-fluid hydrodynamics of the superfluid phases of 3He,
however, is beyond the scope of this introduction.

Second Sound

The occurrence of second sound is one of the most characteristic features
of superfluids, because it is a direct consequence of broken gauge symmetry
of the superfluid order parameter. For 3He-B the velocity of second sound
is given by (2.43). As an example, we show in Fig. 4.28 the temperature
dependence of the velocity of second sound obtained in the B phase at a
pressure of 21.3 bar. The solid line represents the prediction of the two-fluid
model, which agrees with the measured data reasonably well. However, since
the entropy density S carried by the normal-fluid component is reduced in
3He by a factor of T/TF in comparison with 4He, v2 turns out to be about
three orders of magnitude smaller than the Fermi velocity vF.

As a consequence of the broken relative symmetry of spin rotations and
gauge transformations, a propagating ‘second sound’ mode exists in 3He-A1

that is a combination of an entropy-density wave and a spin-density wave.
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b) 3rd Sound

3He-B

140 4 Superfluid 3He

Third Sound

As we have seen in Sect. 2.2.8, third sound is a surface wave propagating on a
thin superfluid film. Recently, this sound mode was observed in superfluid 3He
for the first time [201]. In this experiment, standing waves of third sound
in films with thicknesses of about 100 nm were generated by applying an
oscillating electric field and detected capacitively. Despite the rather small
dielectric constant of the liquid, the resolution for the average film surface
displacement was about 30 pm Hz−1/2.

Analogous to the expression for helium II, the velocity of third sound in
this experiment is given by

v3 =

√
〈!s〉
!

3α

d3
, (4.34)

where 〈!s〉 represents the superfluid density averaged over the film thick-
ness d. The quantity α denotes the Hamaker constant (see Sect. 2.2.4). The
additional temperature-dependent term presented in (2.48) can be neglected
in superfluid 3He, because of the low entropy density and the low tempera-
ture.

Figure 4.30 shows the temperature dependence of the velocity of third
sound for different film thicknesses. As expected, v3 decreases with increasing
temperature. At the lowest temperature, v3 first increases with the thickness
of the film until a maximum is reached for films between 122 nm and 174 nm.
For thicker films, the velocity of third sound decreases again. The reason for
this nonmonotonic variation with thickness lies in the thickness dependence
of the Van der Waals force f and the superfluid density. In very thin films,
the thickness becomes comparable to the healing length and therefore the
superfluid component is greatly reduced and varies strongly with d. With
increasing thickness the proportionality f ∝ d−3 becomes dominant, leading
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c) 4th Sound
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to a reduction of v3. Since the healing length depends on the ratio T/Tc, the
cross-over from one regime to the other takes place at different temperatures
for films with different thicknesses.

Fourth Sound

Density waves propagating through a superleak are called fourth sound. This
characteristic mode has been observed in both the A phase and B phase, pro-
viding an early proof of the superfluidity of these liquids [202–204]. Whereas
the velocity of fourth sound in the isotropic B phase can by described, to a
good approximation, by v4 = v1

√
(!s/!), the propagation of fourth sound in

3He-A depends on the angle Θ between the wave vector q of the sound wave
and the orbital angular momentum l. Near Tc, the velocity of fourth sound
in the A phase can be expressed by

v4 = v1

√
〈!s〉
!

5
3

[2 − cos2 Θ)] , (4.35)

where 〈!s〉 is the average value of the superfluid density and v1 is the velocity
of first sound. The latter is given by (3.38) as in the normal-fluid phase.
Fourth-sound experiments have been used to determine the superfluid density
and to monitor superflow. Figure 4.31 shows the average superfluid density in
liquid 3He below Tc as determined by this type of measurement. In agreement
with other methods, one finds a temperature variation 〈!s〉/! ∝ (1 − T/Tc).
No visible change has been observed in measurements of v4 at the phase
transition from the A to the B phase (not shown in Fig. 4.31).
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d) order parameter modes

collective excitations of Cooper pairs

► relative motion of      and   
► inner structure of Cooper pairs
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pair breaking

3He-A   (examples of order parameter modes)
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3He-A   (examples of order parameter modes)

4.8 Collective Excitations – Sound Propagation 143

0.0 0.5 1.0
Temperature T / Tc

0

1

2

h
ω

/∆
m

(T
)

3He-A

Clapping

Normal flapping

Superflapping

0.0 0.5 1.0
Temperature T / Tc

0

1

2

Γ
/h

ω

3He-A

Clapping

Normal flapping

Superflapping

Fig. 4.32. (a) Reduced energy !ω/ [!∆m(T )] and (b) reduced linewidths Γ/!ω of
normal-flapping, clapping, and superflapping modes as a function of the normalized
temperature T/Tc. Here, ∆m(T ) denotes the maximum gap [205]
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Fig. 4.33. Attenuation of longitudinal
zero sound in 3He-A at 54 MHz as a
function of the normalized temperature
T/Tc at 29.3 bar. The solid line repre-
sents the theoretical prediction [207]

3He-B

In the B phase, the collective order-parameter modes can be visualized as
excited states of the quasiparticle pairs with frequencies proportional to the
energy gap ∆B(T ). They can be classified by their total angular momenta
J = L+S and their azimuthal component Jz. In total, there are 18 possible
modes, a few of which couple to zero sound.
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3He-B

In the B phase, the collective order-parameter modes can be visualized as
excited states of the quasiparticle pairs with frequencies proportional to the
energy gap ∆B(T ). They can be classified by their total angular momenta
J = L+S and their azimuthal component Jz. In total, there are 18 possible
modes, a few of which couple to zero sound.

► damping of longitudinal zero sound 3He-A
► clapping resonance
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3He-B   (classification                  ,      )

► since gap decreases with temperature 

► arrows indicated expected peak position

144 4 Superfluid 3He

Figure 4.34 shows a schematic illustration of the dispersion of different
collective modes in 3He-B. First and second sound and spin waves exhibit
a linear dispersion. The transition from the hydrodynamic regime to the
collisionless regime is indicated by the broadening of the dispersion curves.
This transition takes place either at ωτ = 1, or at q# = 1, depending on
which criterion is matched first for the different modes. Here, τ represents
the quasiparticle collision time and # the mean free path.
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Fig. 4.34. Dispersion of collective
modes in 3He-B [133]

Beside these modes, the dispersion of so-called imaginary squashing and
real squashing order-parameter modes are also shown. They correspond to
two different types of periodic distortions of the energy gap. Both modes oc-
cur in the state with the total angular momentum J = 2, in contrast to the
J = 0 ground state associated with the B phase order parameter. Excitations
of these modes have characteristic energies of

√
12/5 ∆ and

√
8/5∆. In the

range q < 1/ξ these characteristic energies are independent of the wave vec-
tor. The quantity ξ represents the coherence length of the quasiparticle pairs.
The dashed lines indicate the Zeeman splitting of the imaginary squashing
and real squashing mode levels in an external magnetic field at q = 0. For
phonon energies !ω > 2∆ pair breaking takes place.

A peak in the absorption is expected if the sound frequency matches the
excitation frequency of a particular mode. Since the energy gap varies with
temperature, it is possible to observe different modes even at fixed sound
frequency by sweeping the temperature. Figure 4.35 shows the results of a
damping measurement of zero sound at a fixed frequency of 44.2 MHz as a
function of temperature. Close to Tc, pair breaking dominates the damping.
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Fig. 4.35. Attenuation of longitudinal
zero sound in 3He-B at 44.2 MHz as
a function of the reduced temperature
T/Tc at 2.44 bar. The solid line repre-
sents a theoretical curve and the ar-
rows indicate the position of the max-
ima predicted theoretically [208]

The intermediate peak is the imaginary squashing mode. The attenuation is
so large for this mode that it could not be measured in the central region in
this experiment. The smaller peak on the low-temperature side corresponds
to the real squashing mode, which is coupled much more weakly to the sound
wave.

Figure 4.36a shows the result of a similar measurement at 60 MHz and
5.3 bar. Pair breaking and the imaginary squashing mode are off scale in this
plot. The very narrow absorption line at low temperatures corresponds to the
real squashing mode. The width of the peak is determined by the quasiparticle
collision rate. Since at low temperatures only very few quasiparticles exist,
the peak becomes very sharp.
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Fig. 4.36. (a) Normalized attenuation of longitudinal zero sound in 3He-B at
60 MHz and a pressure of 5.3 bar as a function of the reduced temperature T/Tc

[209]. (b) Attenuation of zero sound in 3He-B due to the real squashing mode in a
magnetic field of 50 mT and at 11 bar. The measuring frequency was 74.4 MHz [210]

with fixed sound frequencies, several modes
can be excited at different temperatures
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Fig. 4.32. (a) Reduced energy !ω/ [!∆m(T )] and (b) reduced linewidths Γ/!ω of
normal-flapping, clapping, and superflapping modes as a function of the normalized
temperature T/Tc. Here, ∆m(T ) denotes the maximum gap [205]
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Fig. 4.33. Attenuation of longitudinal
zero sound in 3He-A at 54 MHz as a
function of the normalized temperature
T/Tc at 29.3 bar. The solid line repre-
sents the theoretical prediction [207]

3He-B

In the B phase, the collective order-parameter modes can be visualized as
excited states of the quasiparticle pairs with frequencies proportional to the
energy gap ∆B(T ). They can be classified by their total angular momenta
J = L+S and their azimuthal component Jz. In total, there are 18 possible
modes, a few of which couple to zero sound.
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Fig. 4.33. Attenuation of longitudinal
zero sound in 3He-A at 54 MHz as a
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3He-B

In the B phase, the collective order-parameter modes can be visualized as
excited states of the quasiparticle pairs with frequencies proportional to the
energy gap ∆B(T ). They can be classified by their total angular momenta
J = L+S and their azimuthal component Jz. In total, there are 18 possible
modes, a few of which couple to zero sound.

transition into collision-less regime

dispersion relation
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4.8 Collective Excitations － Order parameter modes

► pair breaking just below Tc

► extremely sharp resonances at low temperatures
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Fig. 4.35. Attenuation of longitudinal
zero sound in 3He-B at 44.2 MHz as
a function of the reduced temperature
T/Tc at 2.44 bar. The solid line repre-
sents a theoretical curve and the ar-
rows indicate the position of the max-
ima predicted theoretically [208]

The intermediate peak is the imaginary squashing mode. The attenuation is
so large for this mode that it could not be measured in the central region in
this experiment. The smaller peak on the low-temperature side corresponds
to the real squashing mode, which is coupled much more weakly to the sound
wave.

Figure 4.36a shows the result of a similar measurement at 60 MHz and
5.3 bar. Pair breaking and the imaginary squashing mode are off scale in this
plot. The very narrow absorption line at low temperatures corresponds to the
real squashing mode. The width of the peak is determined by the quasiparticle
collision rate. Since at low temperatures only very few quasiparticles exist,
the peak becomes very sharp.
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Fig. 4.36. (a) Normalized attenuation of longitudinal zero sound in 3He-B at
60 MHz and a pressure of 5.3 bar as a function of the reduced temperature T/Tc

[209]. (b) Attenuation of zero sound in 3He-B due to the real squashing mode in a
magnetic field of 50 mT and at 11 bar. The measuring frequency was 74.4 MHz [210]
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The intermediate peak is the imaginary squashing mode. The attenuation is
so large for this mode that it could not be measured in the central region in
this experiment. The smaller peak on the low-temperature side corresponds
to the real squashing mode, which is coupled much more weakly to the sound
wave.

Figure 4.36a shows the result of a similar measurement at 60 MHz and
5.3 bar. Pair breaking and the imaginary squashing mode are off scale in this
plot. The very narrow absorption line at low temperatures corresponds to the
real squashing mode. The width of the peak is determined by the quasiparticle
collision rate. Since at low temperatures only very few quasiparticles exist,
the peak becomes very sharp.
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[209]. (b) Attenuation of zero sound in 3He-B due to the real squashing mode in a
magnetic field of 50 mT and at 11 bar. The measuring frequency was 74.4 MHz [210]

► J = 2           multiplicity  2J +1           5 levels
► Zeeman splitting in magnetic field

real squashing mode in magnetic field measurement at higher frequency 60 MHz


