

macroscopic wave function

$$\Psi_{lphaeta}(m{r}) = \mathcal{A}_{lphaeta}(m{r})\,\mathrm{e}^{\mathrm{i}arphi(m{r})}$$
 $\left.igg
brace$ 3 x 3 matrix

18 degrees of freedom

i) quantization of circulation

- ⁴He circulation is quantized
 - ³He behavior is more complicated
- ³He-A: circulation is not quantized under ideal conditions, which means without external influences

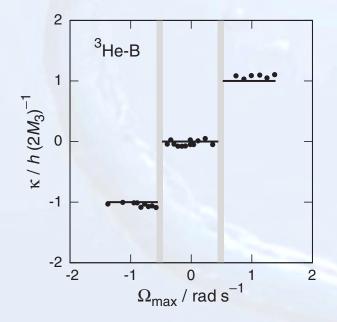
$$\mathbf{v}_{\mathrm{s}} \neq \frac{\hbar}{2m_3} \nabla \varphi$$

- ▶ phase can be adjusted by modification of l \longrightarrow $\operatorname{curl} \boldsymbol{v}_{\mathrm{s}} = \frac{\hbar}{2m_{3}r} \, \widehat{\boldsymbol{l}} \cdot \left(\frac{\partial \widehat{\boldsymbol{l}}}{\partial \phi} \times \frac{\partial \widehat{\boldsymbol{l}}}{\partial r} \right)$
- if l(r) (continuous) vortices can be generated without singularity in v_{s} and l(r) for example near walls

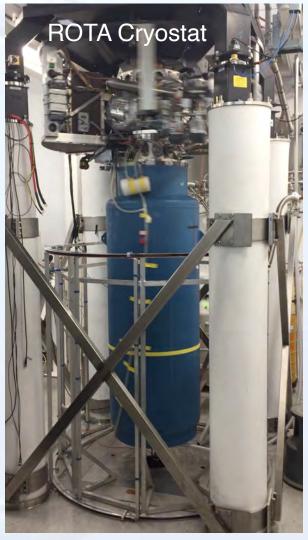
³He-B: → circulation is quantized

$$egin{array}{ll} oldsymbol{\sim} & oldsymbol{v}_{
m s} = rac{\hbar}{2m_3}
abla arphi & \ oldsymbol{\kappa}_3 = rac{h}{2m_2} & \ \end{array}$$

- ▶ Vinen-type experiment
- ► 1 rad/s = 0.16 revolutions /s



experimental problem: rotation at very low temperatures



up to 3 revolutions / s

Quantized Vortices (structure much more complicated as in He-II)

³He-A:

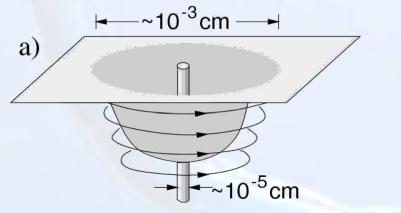
a) with uniform texture and orbital field $~l \longrightarrow$ vortices with normal-fluid hard core $\xi_0 \approx 100\,\mathrm{nm}$

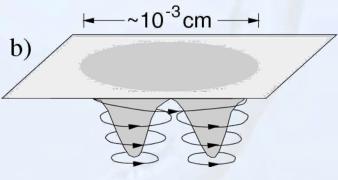
extended soft region $\xi_{\rm d} \approx 6 \, \mu {\rm m}$. n=1

dipole healing length it describes over which distance $d \parallel l$ recovers

coherence length

b) if l can adjust freely one finds continuous vortices with n=2 without singularity (no hard core) continuous velocity field

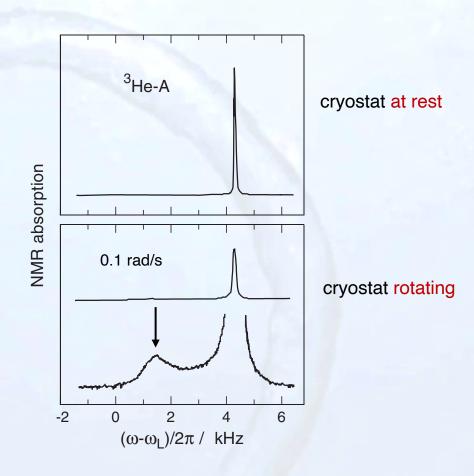




Investigation of vortices in ³He-A with NMR

frequency shift because of localized spin waves in core!

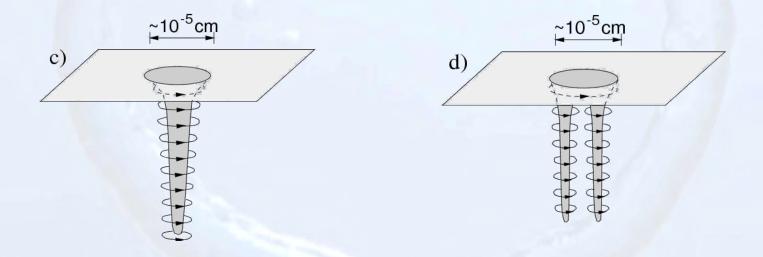
container diameter 2.5 mm



 3 He-B: only vortices with hard core $\xi_0 pprox 10... \ 100 \, \mathrm{nm}$

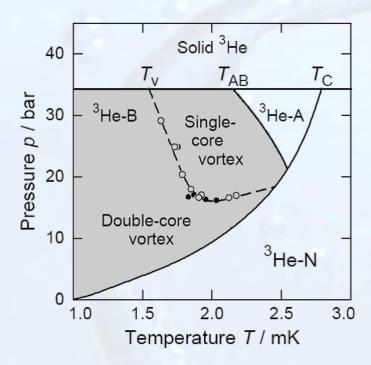
depends on pressure

- c) single vortices with A phase in core
- d) double vortices with two half-quantum of circulation and normal-fluid core



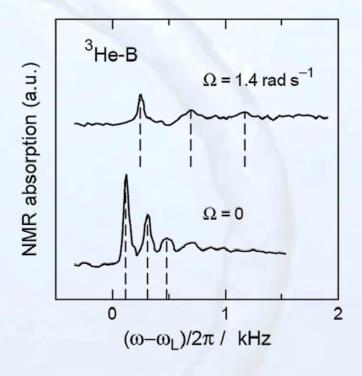
these vortices exist in distinct parts of the phase diagram

³He-B: phase diagram under rotation



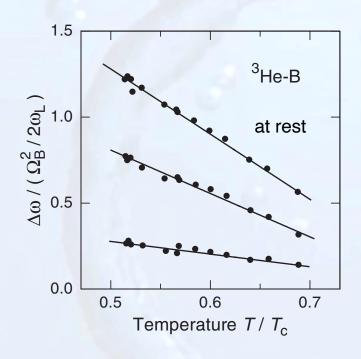
first order phase transition

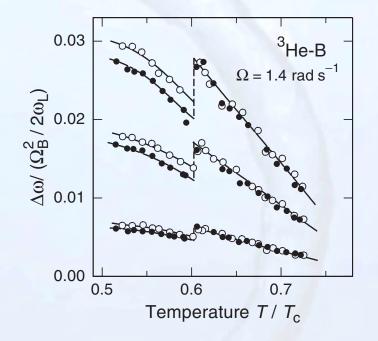
spin waves resonances (collision-less)



under rotation — larger spacing because additional term in free energy

³He-B: phase diagram under rotation

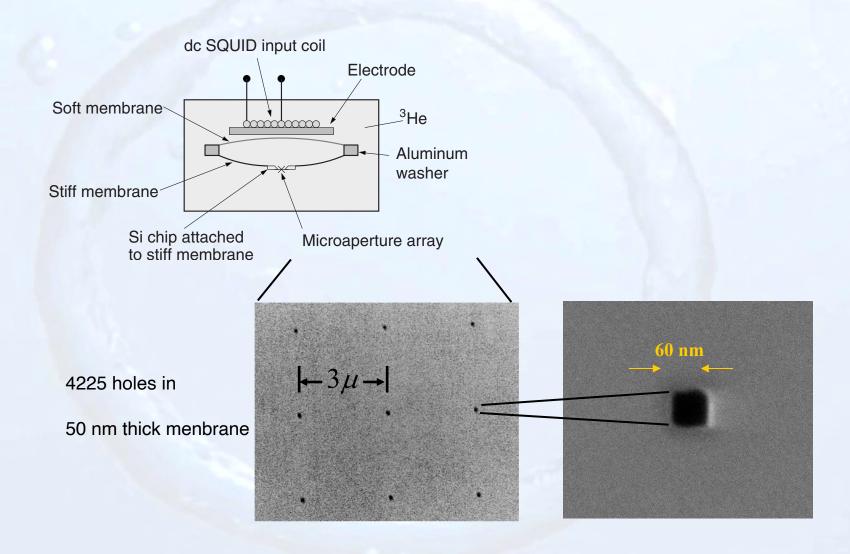




hysteresis is observed

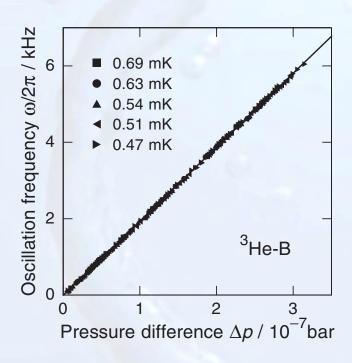
→ 1st order transition

ii) Josephson effects



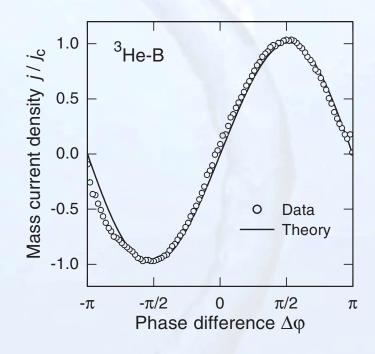
Josephson frequency

$$\omega_{\rm J} = m_3 \, \Delta p / (\varrho \hbar)$$

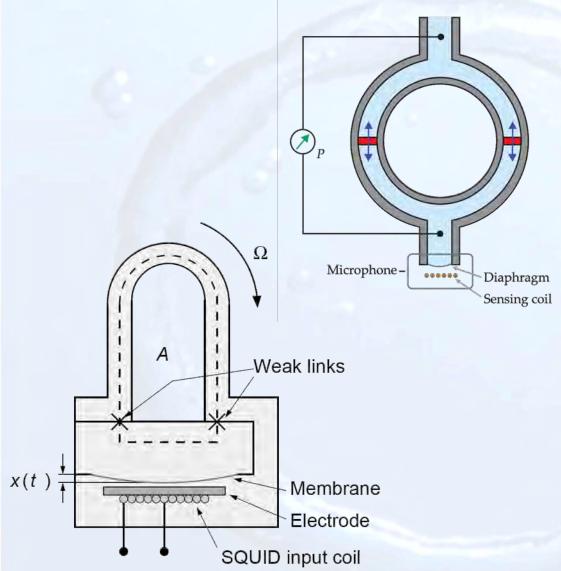


Josephson dc current

$$j = j_{\rm c} \sin(\Delta \varphi)$$

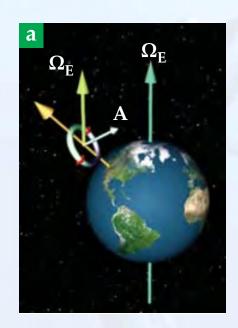


DC-SHeQUID: Superfluid He QUantum Interference Devices



actual device

DC-SHeQUID in Earth rotation

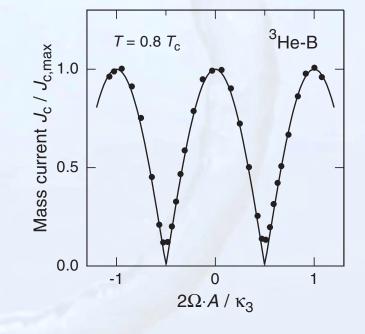


 $j_{
m c}=2j_{
m c}^0\left|\cos\!\left(\pirac{2m{\Omega}\!\cdot\!\!m{A}}{\kappa_3}
ight)
ight|$

angular velocity of rotating system (earth)

normal vector of loop

perfect agreement with theoretical expectations



4.7 Normalfluid Density

normalfluid density + thermal excitations of quasi-particles

General expression from Landau's Fermi liquid theory

$$\stackrel{\leftrightarrow}{oldsymbol{arrho}}_{
m n} = \, rac{m^*}{m} \left(\stackrel{\leftrightarrow}{f 1} + rac{1}{3} \, F_1 \, rac{\stackrel{\leftrightarrow}{oldsymbol{arrho}}_{
m n,0}}{arrho}
ight)^{-1} \stackrel{\leftrightarrow}{oldsymbol{arrho}}_{
m n,0} \, ,$$

normalfluid density without Fermi liquid correction

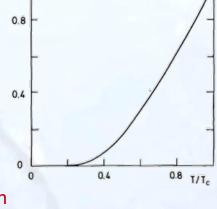
 \longrightarrow temperature dependence given by Yosida function $Y_0(\hat{k},T)$

³He-B

isotropic
$$\longrightarrow$$
 independent of $\widehat{\boldsymbol{k}}$ \longrightarrow $Y_0(\widehat{\boldsymbol{k}},T)=Y_0$

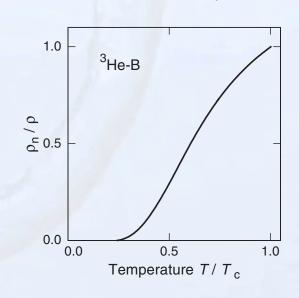
$$\varrho_{\rm n} = \varrho \frac{\left(1 + F_1/3\right) Y_0}{1 + F_1 Y_0/3}$$
 temperature dependent scalar!

- lacktriangleright monotonic increase for $T o T_{
 m c}$
- lacktriangle disappears exponentially for T o 0



Yo(T)

Andronikasvili-like experiment



4.7 Normalfluid Density

³He-A much more complicated situation!

close to T_c Q_n can approximated by:

$$\varrho_{\rm n,\perp} - \varrho = 2\varrho_{\rm n,\parallel} = -\frac{7}{5}\,\zeta(3)\frac{m}{m^*}\varrho\,\left(\frac{\Delta_{\rm m}}{\pi k_{\rm B}T_{\rm c}}\right)^2$$
 parallel to orbital momentum perpendicular to orbital momentum

Specific heat

3
He-B $C_{
m B}(T)=\sqrt{2\pi}\,D(E_{
m F})\,k_{
m B}\Delta_{
m B}\left(rac{\Delta_{
m B}}{k_{
m B}T}
ight)^{3/2}\!{
m e}^{-\Delta_{
m B}/(k_{
m B}T)}$

3
He-A $C_{
m A}(T)=rac{7}{5}\,\pi^2igg(rac{T}{\Delta_{
m m}}igg)^2\,C_{
m N}(T)\propto T^3$ for $T\ll\Delta_{
m m}^-/k_{
m B}$ and $\widehat{m k}=\pm\widehat{m l}$ $C=rac{m^*}{m}\,C_{
m FG}$

very low temperatures:

$$arrho_{
m n,\parallel} = \pi^2 rac{m}{m^*} \, arrho \, \left(rac{k_{
m B} T_{
m L}}{arDelta_{
m m}}
ight)^2 \qquad \propto T^2$$

$$arrho_{
m n,\perp} = rac{7}{15} \pi^4 \, rac{m}{m^*} \, arrho \, \left(rac{k_{
m B} T}{\Delta_{
m m}}
ight)^4 \, \propto T^4$$

4.8 Collective Excitations — Sound Propagation

a) 2nd Sound

³He-B

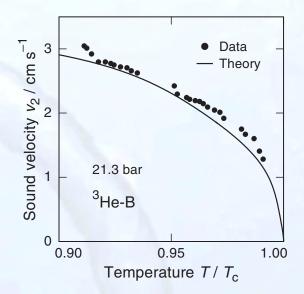
$$v_2 = \sqrt{rac{arrho_{
m s}}{arrho_{
m n}} S^2 \left(rac{\partial T}{\partial S}
ight)_{\!arrho}}$$

as in case of He-II

³He-A₁

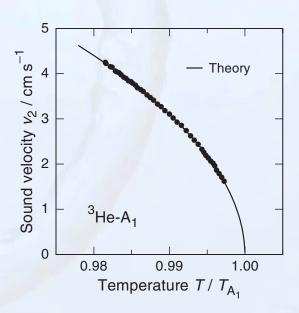
$$v_2 = rac{\gamma \hbar}{2m^*} \sqrt{rac{arrho}{\chi}} rac{arrho_{ ext{s},\perp}}{arrho_{ ext{n},\perp}} \, .$$

- \triangleright v_2 just a few cm/s
- lacksquare reduction $\propto rac{T}{T_{
 m F}}$ in S



not only entropy wave but also spin wave

higher velocity as in case of ³He-B

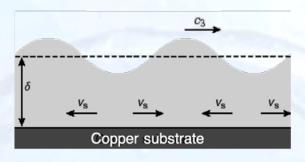


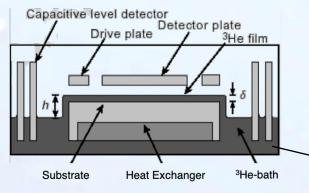
4.8 Collective Excitations — Sound Propagation

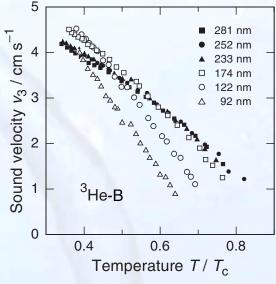
b) 3rd Sound

³He-B

$$v_3 = \sqrt{\frac{\langle \varrho_{\rm s} \rangle}{\varrho}} \, \frac{3e}{d^3}$$







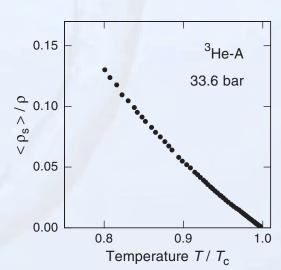
$$\epsilon=1.0426$$

c) 4th Sound

$$v_4 = v_1 \sqrt{\frac{\langle \varrho_s \rangle}{\varrho}} \frac{5}{3} \left[2 - \cos^2 \Theta \right]$$

$$\langle \varrho_{\rm s} \rangle / \varrho \propto (1 - T/T_{\rm c})$$

angle between q and l



d) order parameter modes

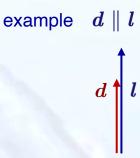
- \longrightarrow collective excitations of Cooper pairs $\hbar\omega < 2\Delta$
- ightharpoonup relative motion of d and l
- inner structure of Cooper pairs

→ 18 different order parameter modes

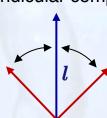
 $\hbar\omega > 2\Delta$ — pair breaking

³He-A (examples of order parameter modes)

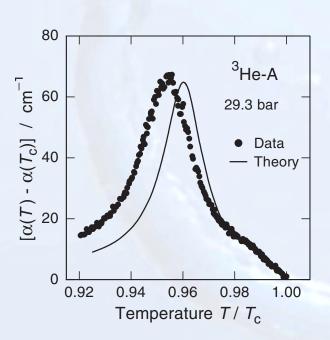
name	energy $(\hbar\omega/\Delta_{ m m}(T))$
normal flapping	$\propto \sqrt{rac{4}{5}}rac{T}{T_{ m c}}$
clapping	1.23
superflapping	1.56 for $T ightarrow 0$ 2 for $T ightarrow T_{ m c}$

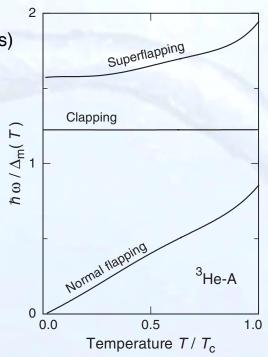


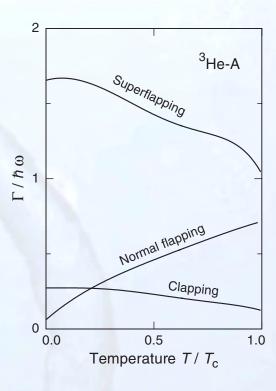
d splits up in two perpendicular components



³He-A (examples of order parameter modes)

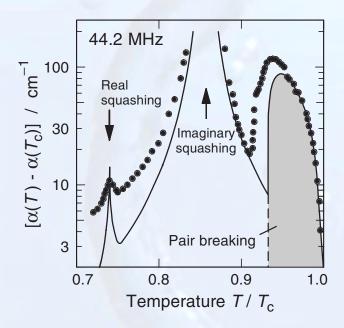






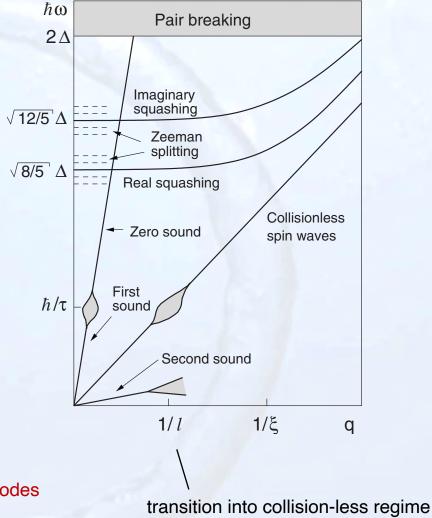
- damping of longitudinal zero sound ³He-A
- clapping resonance

 $^3\mathrm{He} ext{-B}$ (classification $oldsymbol{J} = oldsymbol{L} + oldsymbol{S}$, J_z)

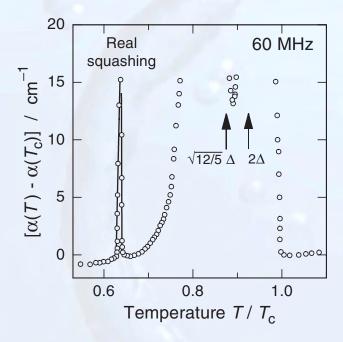


- since gap decreases with temperature
 - with fixed sound frequencies, several modes can be excited at different temperatures
- arrows indicated expected peak position

dispersion relation

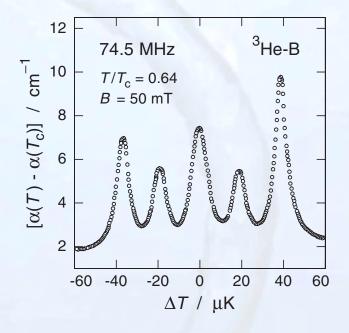


measurement at higher frequency 60 MHz



- pair breaking just below T_c
- extremely sharp resonances at low temperatures

real squashing mode in magnetic field



- ► $J = 2 \longrightarrow$ multiplicity $2J + 1 \longrightarrow 5$ levels
- Zeeman splitting in magnetic field