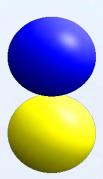


general spin wave function expressed using d:

$$|\Psi\rangle = d_x \left[|\downarrow\downarrow\rangle - |\uparrow\uparrow\rangle \right] + id_y \left[|\downarrow\downarrow\rangle + |\uparrow\uparrow\rangle \right] + d_z \left[|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle \right]$$

$$= -(d_x - id_y) |\uparrow\uparrow\rangle + (d_x + id_y) |\downarrow\downarrow\rangle + d_z \left[|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle \right]$$

$$|S_z = +1\rangle \qquad |S_z = -1\rangle \qquad |S_z = 0\rangle$$



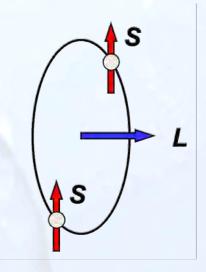
association with superfluid phases

³He-A₁ (exist only in magnetic fields)

spins align parallel to applied magnetic field $(S_z = +1)$ — only pairs $|\uparrow\uparrow\rangle$

$$\longrightarrow d_x + \mathrm{i} d_y = 0 \qquad d_z = 0$$

$$\longrightarrow |\Psi_{\mathrm{A}_1}\rangle = -2 \, d_x \mid \uparrow \uparrow \rangle$$



³He-A

$$S_z = \pm 1 \longrightarrow d_z = 0$$

$$|\Psi_{\rm A}\rangle = -(d_x - \mathrm{i} d_y) |\uparrow\uparrow\rangle + (d_x + \mathrm{i} d_y) |\downarrow\downarrow\rangle$$

ABM state

Anderson, Brinkman, Morel 1961, 1963

³He-B

$$\longrightarrow$$
 general expression of wave function \longrightarrow quasi isotropic! total momentum: $J=L+S=0$

$$\longrightarrow \left| |\Psi_{\mathrm{B}}\rangle = d_x \left[|\downarrow\downarrow\rangle - |\uparrow\uparrow\rangle \right] + \mathrm{i} d_y \left[|\downarrow\downarrow\rangle + |\uparrow\uparrow\rangle \right] + d_z \left[|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle \right] \right|$$

BW state

Bailian, Werthammer 1963

at the phase transition 3 symmetries are (partially) broken at once

gauge (phase) ← → superfluidity
spin momentum ← → ferromagnets
orbital momentum ← → liquid crystals

group theory: symmetry of ³He

$$G=SO(3)_L imes SO(3)_S imes U(1)_{arphi}$$
 special orthogonal unitary Ablian rotational group rotational group

example: ferromagnet $SO(3)_S$ magnetization

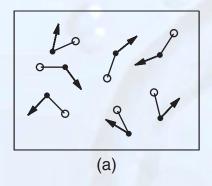
above T_c : isotropic (paramagnet)

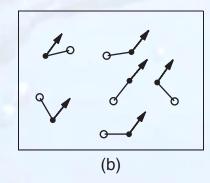
below T_c : one direction selected, but still rotational symmetry about axis of magnetization

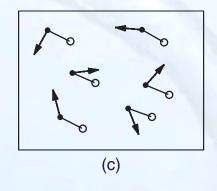
 $SO(3)_S$ only partially broken \longrightarrow R = U(1)

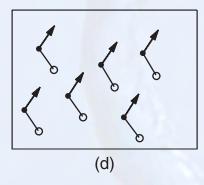
residual symmetry

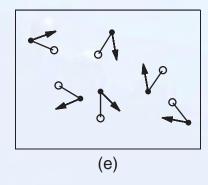
Two-dimensional model $G = U(1)_L \times U(1)_S$











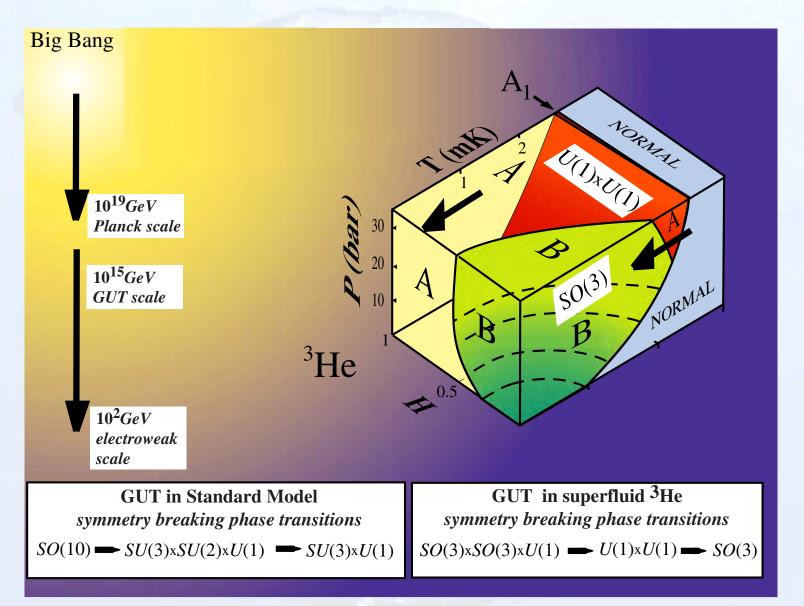
Orbital angular momentum degree of freedom

Spin degree of freedom

- a) isotope paramagnetic fluid
- b) liquid ferromagnet
- c) nematic liquid crystal
- d) ³He-A, ³He-A₁
- e) ³He-B

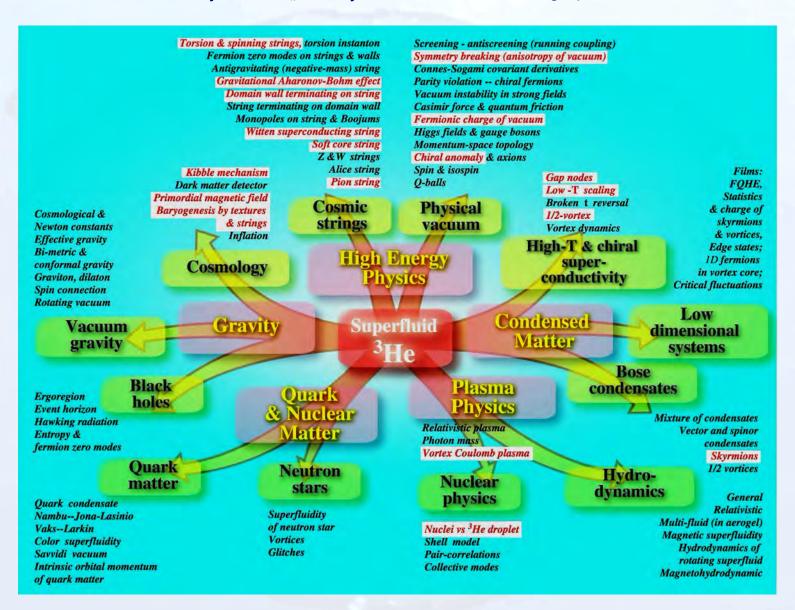
Suprafluid ³He – a Model System for "all" Physics

Grigory E. Volovik

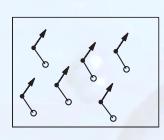


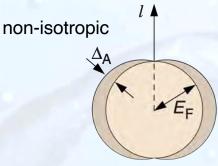
Suprafluides ³He – a Model System for "all" Physics

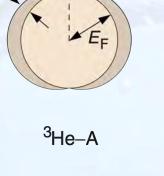
Grigory E. Volovik

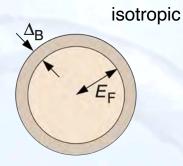


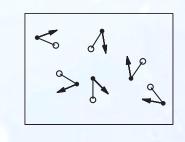
Energy gap











$$m{d(k)} = \sqrt{3/2} \; \Delta_{
m m}(T) \; \sin(\widehat{m{k}}, \widehat{m{l}}) \; \widehat{m{d}} = \Delta_{
m A}(\widehat{m{k}}, T) \; \widehat{m{d}}$$
 maximal gap orbital momentum $\Delta_{
m m}(0) = 2.029 \, k_{
m B} T_{
m c}$

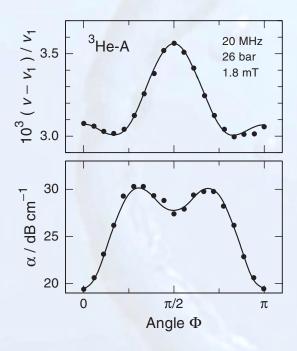
BCS theory T o 0 $\Delta_{
m B} pprox 1.76\,k_{
m B}\,T_{
m c}$ $d(m{k}) = \Delta_{
m B}(T)\,\widehat{m{d}}$ $\widehat{m{d}} = \stackrel{\leftrightarrow}{\mathbf{R}}(\widehat{m{n}},\Theta)\widehat{m{k}}$ rotation of spin coordinates relative to $m{k}$ vector of pair

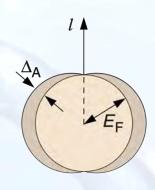
- in A phase pairs can be broken at arbitrarily small energy still it is a superfluid!
 → metastable persistent flow
- but: massive objects cannot be moved without friction in ³He-A

- ► like He-II stable persistent flow
- \blacktriangleright massive objects can be moved without friction in $^{\rm 3}{\rm He\text{-}B}$ for $v < v_{\rm c}$

experimental determination of anisotropy of gap of ³He-A

propagation of longitudinal zero sound

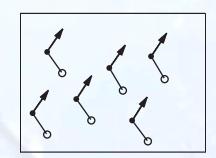




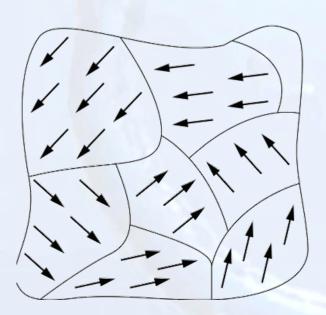
- in this experiment $m{l}$ is oriented by a small magnetic field 1.8 mT
- $lack \phi$ is the angle between $oldsymbol{B}$ and $oldsymbol{q}$ wave vector of sound wave
- expected anisotropy is clearly observed

Textures:

- ► this term was introduced by de Gennes (similar to liquid crystals)
- denotes orientational effects of l and d
- texture depends on many things: dipole-dipole interaction, magnetic and electric fields, geometry, ...



often no uniform texture — texture domains



a) orientation of $\boldsymbol{l},\boldsymbol{d}$ without external field

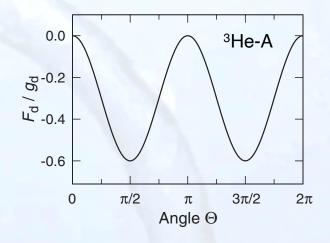
³He-A: macroscopic orientation

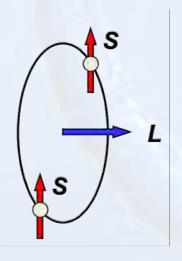
dipole-dipole energy is minimal, if $|\boldsymbol{l}| \parallel \boldsymbol{d} \ \cong \ \boldsymbol{l} \perp \boldsymbol{S}$

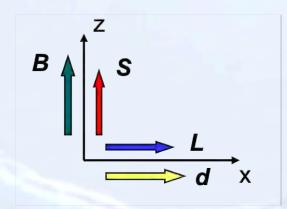
free energy: dipole-dipole interaction

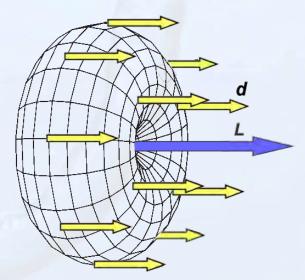
$$F_{\rm d} = -\frac{3}{5} g_{\rm d}(T) \left[1 - (\widehat{\boldsymbol{d}} \cdot \widehat{\boldsymbol{l}})^2 \right] = -\frac{3}{5} g_{\rm d}(T) \sin^2 \Theta$$

$$Q_{\rm d} \approx 10^{-10} (1 - T/T_{\rm c}) \,\mathrm{J \, cm^{-3}} \propto \varrho_{\rm s}$$









³He-B: isotropic regarding spin and orbital momentum

--- no macroscopic orientation

but: dipole-dipole interaction leads to a relative

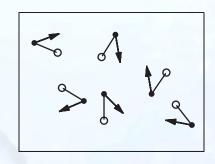
orientation of l, d locally for each point on the Fermi surface described by a rotation about \hat{n} described by $\hat{d} = \overset{\leftrightarrow}{\mathbf{R}} (\hat{n}, \Theta) \hat{k}$

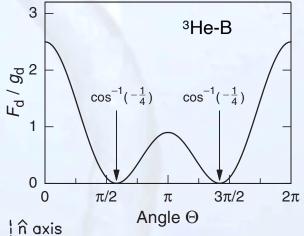
leads to weak texture effects

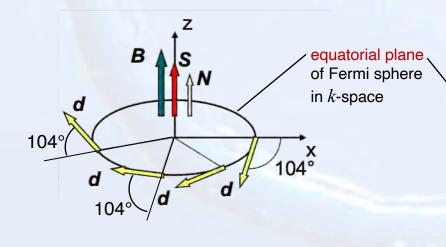
$$F_{\rm d} = \frac{8}{5} g_{\rm d}(T) \left(\cos\Theta + \frac{1}{4}\right)^2$$

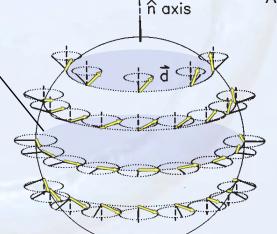
Leggett angle

dipole-dipole energy is minimal, if $\Theta=\arccos{(-1/4)}\approx 104^\circ$









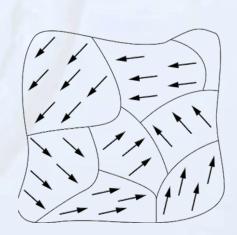
- b) external influences on the orientation of $m{l}$, $m{d}$
 - changes of the texture

textures in ³He-A

preferred alignment and relative strength of different influences

	Preferred Alignment	$\Delta E/(1-T/T_{\rm c})~({\rm J}{\rm m}^{-3})$
magnetic dipole interaction	$d \parallel l$	$-6 \times 10^{-5} (\widehat{\boldsymbol{d}} \cdot \widehat{\boldsymbol{l}})^2$
electric field	$l\perp \mathcal{E}$	$2 \times 10^{-7} (\widehat{\boldsymbol{l}} \cdot \boldsymbol{\mathcal{E}})^2$
magnetic field	$d\perp B$	$5\ (\widehat{m{d}}\cdot m{B})^2$
mass flow	$\boldsymbol{l}\parallel\boldsymbol{v}_{\mathrm{s}}$	$-10~(\widehat{m{l}}\cdotm{v}_{\mathrm{s}})^2$
wall alignment	$l \parallel N$	$-30\ (\widehat{\boldsymbol{l}}\cdot\widehat{\boldsymbol{N}})^2$

- lacktriangleright most important are walls $m{l} \parallel m{N}$ and mass flow $m{l} \parallel m{v}_{
 m s}$
- strength compared to intrinsic alignment: $\mathcal{E} = 17 \, \mathrm{V \, m^{-1}}, \ B = 3.3 \, \mathrm{mT \ and} \ v_{\mathrm{s}} = 2.4 \, \mathrm{mm \, s^{-1}}$
- ► for in homogenies textures gradient energy must be considered



Example for influence of wall and magnetic field

Determination of $Q_{\rm S}/Q$ with with a disc like resonator

- lacktriangle $arrho_{
 m n}$ is dragged with resonator because of $\eta_{
 m n}$
- ightharpoonup mass of ϱ_n adds to moment of inertia
- lacktriangleright resonance frequency depends on $arrho_{
 m n}/arrho$

$$\longrightarrow \varrho_{\rm s}/\varrho$$

(i) $oldsymbol{B}$ parallel to wall $oldsymbol{B}_{\parallel} \perp oldsymbol{N}$

$$\left.egin{array}{c} l\parallel N \ S\parallel B_\parallel \end{array} igcap d\perp B_\parallel \end{array}
ight\} \;\;d\parallel l$$

optimal even without external field

(ii) $oldsymbol{B}$ perpendicular to wall $oldsymbol{B}_{\perp} \parallel oldsymbol{N}$

not optimal for dipole dipole interaction



Andronikasvili-like experiment

