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4. Superfluid 3He

A model for all physics in our universe?
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Discovery of superfluid 3He

Douglas Osheroff, Bob Richardson, Dave Lee 

indications for several phase transitions in a pressure dependent measurement
with a Pomeranchuk cell  
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Original recordings: 

the solid spin system being recorded in my lab book,
which is shown in Fig. 6. There was no discussion what-
so-ever at that time of a possible phase transition in the
liquid!

Note that at the far right in Fig. 5 one can see a small
abrupt drop in the pressure vs. time curve. I soon real-
ized that this feature, which was always seen, but not at
the same pressure, was also a transition. But this transi-

FIG. 4. Pressurization curve
taken Nov. 24, 1971 showing
the first observation of the ‘A’
transition. Pressure increases
vertically while time increases
to the right. The abrupt jumps
in the pressurization curve oc-
curred when the capacitance
bridge was rebalanced. The
ragged line is the temperature
of the dilution refrigerator.

FIG. 5. Pressurization curve
taken Nov. 29, 1971 showing
the second observation of the
‘A’ transition. Note that the
‘A’ features in this and Fig. 4
occur at the same pressure, and
note the tiny but abrupt drop in
pressure labeled ‘B’. This was
the first time the ‘B’ transition
was ever observed.
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cryostat: 

that it was their turn to use it. I reluctantly agreed to
give up the magnet, but kept my apparatus cold in case
their apparatus leaked, as often happened in those days.

While I was waiting for the verdict on their experi-
ment, I decided to see just how low a temperature I
could reach with my Pomeranchuk cell. We knew our
copper wire NMR thermometer lost thermal contact
with the liquid 3He in the cell below about 2.7 mK, but
I felt we could extrapolate our thermometry to lower
temperatures using the expected slope of the 3He melt-
ing curve, which had already been measured at La Jolla
(Johnson et al., 1970) and by myself to below 3 mK. My
experiment consisted of forming solid 3He at a very
steady rate, and plotting the melting pressure vs. time on
a strip-chart recorder. It is important to note here that I
was using a capacitive pressure transducer of the sort
first developed by Straty and Adams (1969) at the Uni-
versity of Florida. In such a device the hydrostatic pres-
sure flexes a thin metal diaphragm to which one plate of
a parallel plate capacitor was attached, thus changing
the capacitor gap, which was measured with an AC ca-
pacitance bridge. It had far better resolution than any-
thing which had been available before. The parts of my
pressure transducer are shown in Fig. 3.

The first such experiment was carried out on Novem-
ber 24, 1971, the day before the American Thanksgiving
holiday. As I watched, the pressure rose steadily as the
cell cooled. Suddenly, at a temperature I estimated to be
about 2.6 mK, the rate of cooling abruptly dropped by
about a factor of two. I guessed that this decrease in the
cooling rate signaled the onset of heating due to the
plastic deformation of solid 3He by the moving bellows,
and soon decided to terminate the compression. A por-
tion of the resulting pressurization curve first showing
this ‘kink’ is seen in Fig. 4. The hand-written numbers in
the figure were added four days later. After melting the
solid in the cell by decompression, I decided to let the
cell pre-cool to as low a temperature as could be

reached with my dilution refrigerator over the entire
four-day holiday, and then to try the experiment again
on Monday. If I started at 15 mK rather than 20 mK,
there would be 30% less solid in my cell at 2.6 mK than
there had been in the compression on Nov. 24.

On that fateful Monday I got into the lab at about
noon, ate a quick lunch as was my habit, and started the
compression at about 12:35 pm. By 5:50 pm I neared the
pressure at which the sudden decrease in cooling rate
had been seen in the previous run. I did not expect the
kink to occur at the same pressure, if at all. Nonetheless,
I soon saw another kink in the pressurization curve, and
could tell that it was close to the same pressure at which
it had occurred before. My heart sank. I then made a
careful determination of the pressures at which these
‘glitches’ had occurred, and found the two pressures
were the same to within about one part in 50 000!

At this moment adrenaline began to flow through my
veins, as I immediately recognized that the probability
that plastic deformation would just begin in my cell at
exactly the same pressure on successive compressions
with very different starting conditions was vanishingly
small. A more logical explanation for this coincidence
was that this glitch signaled some highly reproducible
phase transition in my cell. Had I managed to reach the
temperature of the nuclear magnetic phase transition in
solid 3He? The temperature seemed too high. I then
repeatedly compressed and de-compressed through the
region of the glitch to insure that it was indeed repeat-
able, and to measure its pressure more accurately. The
initial pressurization curve through the ‘glitch’ that day
is shown in Fig. 5. I then found Bob Richardson, and we
discussed the possible nature of the new transition I had
discovered. We agreed that if there were a first order
transition in the solid in which the spin system lost per-
haps 30% of its entropy, we could understand the
change in slope of the pressurization curve. This discus-
sion resulted in a possible magnetic phase diagram for

FIG. 3. Photograph of the ca-
pacitive pressure transducer for
the 3He cell during assembly.
The moving capacitor plate at-
tached to the metal diaphragm
is seen at the left, while the sta-
tionary plate is on the right.
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Lab book of Doug Osheroff

2:40 am: Have discovered the BCS transition in liquid 
3He tonight.  I checked all the other data I had taken, 
and then I looked around for someone with whom to
share my good news. No one was anywhere to be
found in the entire building. 

.

.

.

At 4:00 am: I decided to call Dave Lee and Bob 
Richardson, perhaps a risky move for any graduate
student. Both agreed that the identification was a 
strong one, and at 6:00 am Dave called back for
more details.

April 20, 1972

terface moved through the NMR resonance region: the
NMR absorption signal would first rise above the level
of the normal-liquid signal, and then drop to well below
that level. This effect seemed extremely difficult to un-
derstand, and we eventually tried to get the theorists
down from the 5th floor in hopes of getting an explana-
tion by offering beer and popcorn. They came, ate the
popcorn, drank the beer, and then shook their heads and
departed.

Beginning to feel the potential importance of these
experiments, I decided to make motion pictures of the
data we were obtaining in real time. Those reels of film
still lie, largely unseen, in a chest in my laundry room at
home. I also took a portrait of myself next to the cry-
ostat. I reproduce that photograph in Fig. 9. The hag-
gard expression on my face was quite genuine.

The final revelation in our odyssey came sometime
near the beginning of June. Curiously, nothing is men-
tioned in the lab book. Dave Lee encouraged me to re-
move the iron shims from between the NMR magnet
pole faces to eliminate the gradient in the magnetic field.
He wanted to test for an NMR frequency shift such as
one could get in a magnetically ordered system. Indeed,
we had already seen ‘distortions’ of the liquid 3He NMR
profile with the gradient applied. Both Dave and Bob
were there as I cooled through the A transition. What
we saw was almost too much for words: as we cooled
below the A transition, a small satellite line shifted

gradually to higher and higher frequencies above the
larger solid peak. It resembled the all-liquid signal in
both its shape and area. Then, just as the pressurization
curve indicated the B transition, the satellite line disap-
peared! In Fig. 10 I show roughly every third NMR trace
as a function of time from the compression of June 13.
The conclusion was inescapable: the A transition was
also in the liquid.

Willie Gully and I spent most of June investigating
this unprecedented frequency shift in the liquid. At a
suggestion by Bob Silsbee, we found that it obeyed what
Dave Lee termed a ‘Pythagorean’ relationship:
(n liquid)2 2 (n larmor)2 was found to be a function only of
temperature. Here n larmor is the precession frequency of
the spins in the normal state. This difference rose from
zero at the A transition to about 1010 Hz2 at the lowest
temperatures attainable. Vinay Ambegaokar assured us
that one could not get such a shift from any conven-
tional BCS transition. He was right. On July 14 we ter-
minated the run and I began writing my thesis rather
feverishly as Willie Gully began to modify the Pomeran-
chuk cell to include a vibrating wire viscometer.

Aware of how important our new understanding of
the A and B features were, particularly in light of our
previous published erroneous interpretations, we
quickly wrote up a new manuscript and submitted it to
Physical Review Letters in early July. Having learned
our lesson, and certainly not able to understand the fre-
quency shifts we had discovered, we simply focused on
presenting the data, and avoided ever suggesting that
these might be superfluid transitions. Ironically, al-
though the earlier manuscript had sailed through the re-
view process, this manuscript, in which we had much
more to present, and had been very careful in doing so,
was rejected. As the referee stated: ‘‘I read very care-
fully the previous Letter PRL 28, 885 (1972) and com-
pared it with the contents of the present letter. Although
the letter is clearly written, and, I presume, gives proper
credit to others, I think the difference in the results is
not large enough to warrant fast publication, in particu-
lar if one takes into account your rule against serial pub-
lication.’’ Eventually, after both editors upheld the ref-
eree’s conclusion, Jim Krumhansl, an associate editor of
Physical Review Letters, interceded on our behalf, and
the paper was published (Osheroff, Gully, et al., 1972).

In August 1972 the 13th International Conference on
Low Temperature Physics was held in Boulder, Colo-
rado. I attended the conference before reporting for
work at Bell Laboratories. David Lee presented our re-
sults in a plenary invited talk. John Wheatley, who was
as fast to check on our results as we had been to check
on his, also spoke with supporting evidence. But the
most spectacular talk of the conference, for me at least,
was one by Tony Leggett, read by his colleague Mike
Richards. Tony showed how our NMR frequency shifts
could be produced by a p-wave BCS state in the liquid.
My own talk came on the last afternoon of the confer-
ence, and even I had to change my plane reservation to
attend the session in what was largely an empty room!

FIG. 8. Photograph from my lab book showing entry the night
of April 20, 1972 when I realized the B transition was in the
liquid.
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But, thanks to Tony Leggett, we were on the road to
understanding these strange new fluids.

II. UNDERSTANDING

In the next three years almost every low temperature
laboratory with the capability to reach the necessary low

temperatures studied aspects of superfluidity in 3He,
but for much of this time the theorists were ahead of the
experimentalists. Several questions had been raised.
Were these really p-wave BCS states as Leggett had
suggested? What was the pairing mechanism? How
could there be two separate superfluid phases? What
were the microscopic identities of the A and B phases?

FIG. 9. Self-photograph of my-
self taken some time in April,
1972 with my left hand on the
NMR magnet used in our work.
The cryostat, suspended from
above, is inside the glass dewar
seen entering the magnet field
region.

FIG. 10. Sequence of NMR
traces without applied magnetic
field gradient as the tempera-
ture is slowly decreased below
the A transition. As the liquid
cools, a satellite NMR line can
be seen to shift to higher fre-
quencies. The nearly horizontal
line in the traces is the cell pres-
sure, increasing slowly from
trace 1 to 8. Between traces 3
and 4 the capacitance bridge
was rebalanced.
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4.1 Basic Properties of superfluid 3He

a) Phase diagram  (at ultralow temperatures and without magnetic field) 

► PCP polycritical point
► 3He-N à 3He-A, 3He-B    A-PCP-Z

2nd order phase transition 
► 3He-A à 3He-B    B-PCP

1st order phase transition

4.1 Basic Experimental Facts 99

temperatures an antiferromagnetic phase. The transition temperature for the
antiferromagnetic transition – the so-called Néel temperature TN – is about
0.9 mK at melting pressure.

Four points of this phase diagram are specifically indicated by capital
letters: A and B are the transition points of the superfluid phases along the
melting curve. The polycritical point PCP marks the coexistence point of all
three liquid phases. The letter Z labels the transition between 3He-N and
3He-B at zero pressure p = 0. In Table 4.1, we have gathered together the
values for the pressures and temperatures at which these points occur. The
phase transition from normal to superfluid 3He at the line A–PCP–Z is of
second order. In contrast, the phase transition from the A to the B phase,
indicated by the line B–PCP, is a first-order phase transition.

Table 4.1. Some special points from the temperature–pressure phase diagram of
liquid 3He. Note that we have listed the values according to the new Provisional
Low Temperature Scale PLTS-2000 (see Table 12.3). However, such an adaptation
was not performed for the temperatures given in the remaining text of this book

A B PCP Z

pressure p (bar) 34.3 34.3 21.5 0

temperature T (mK) 2.44 1.90 2.24 0.92

Even small magnetic fields have a great influence on the phase diagram of
liquid 3He, as illustrated in Fig. 4.2. An additional superfluid phase, 3He-A1,
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98 4 Superfluid 3He

an antiferromagnetic state of solid 3He, they believed that the phase tran-
sitions occurred in solid 3He and published their results in a paper entitled:
‘Evidence for a New Phase in Solid 3He’ [141]. But only a few months later
they were able to show in beautiful NMR experiments that the phase transi-
tions they had observed were actually taking place in the liquid [142]. Later
it became clear that three different superfluid phases of 3He exist.

Superfluid 3He is an extraordinarily complex fluid, that shows a great
variety of exotic phenomena (for recent monographs see [133, 143, 144]). In
this chapter we will give a brief introduction to some of these properties.

4.1 Basic Experimental Facts

In this section, we briefly discuss some basic experimental observations that
have been made on superfluid 3He. It is not possible, however, to cover all
the important aspects of the large amount of experimental data available for
superfluid 3He. The selection of observations we present in this introductory
section has been made with the intention of introducing some basic properties
of this fascinating liquid.

4.1.1 Phase Diagram

First, we take a look at the phase diagram of 3He at very low temperatures.
As shown in Fig. 4.1, in the absence of magnetic fields, liquid 3He can exist
in three different phases, namely in a normal-fluid phase 3He-N and in two
superfluid phases 3He-A and 3He-B.

The bcc phase of solid 3He is divided into two regions depending on
the behavior of the nuclear spins: a paramagnetic phase and at very low
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phase diagram of 3He below 3 mK
in the absence of magnetic fields
[145]. The superfluid phases are
grey tinted
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4.1 Basic Properties of superfluid 3He

► A1 phase appears

► for B > 0.65 T no B phase

► PCP point disappears

► small corridor ∼ 20 µK at 38 mT and 10 bar

with magnetic field

100 4 Superfluid 3He

occurs. The temperature range in which this phase exists depends on the
magnitude of the magnetic field. It increases with the applied field and is
0.5 mK wide at 10 T. The A phase also widens with increasing magnetic field
and above 0.65 T it displaces the B phase completely. In addition, the poly-
critical point PCP disappears in finite magnetic fields and the A phase exists
in a small temperature range between 3He-N and 3He-B. At low tempera-
tures and low fields this range is extremely small. As shown in Fig. 4.3, the
A phase has a width of only about 20µK at B = 38mT and p = 10 bar.
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Fig. 4.3. Pressure–temperature phase
diagram of liquid 3He below 2.6 mK in
a magnetic field of 38 mT [146]

4.1.2 Specific Heat

The temperature dependence of the specific heat of liquid 3He below 2 mK
at saturated vapor pressure has already been shown in Fig. 1.3. At the phase
transition from the normal to the superfluid state, the specific heat exhibits
a jump. The relative change of the specific heat ∆C/CN at the transition
depends on the applied pressure. The magnitude of ∆C/CN increases with
increasing pressure, starting from ∆C/CN ≈ 1.4 at p = 0, and reaching
∆C/CN ≈ 2 at the melting pressure. These values roughly agree with the
expected theoretical values 1.426 and 2.029 for the weak coupling and the
strong coupling BCS limits, respectively (see Sect. 10.3). To illustrate the
behavior at high pressures the temperature dependence of the specific heat
at 28.7 bar is shown in Fig. 4.4a. The jump in the specific heat at Tc is, in this
case, ∆C/CN ≈ 1.9. At the transition from the A phase to the B phase at the
temperature TAB, only a small variation of the temperature dependence of C
is visible, but no such jump is seen at Tc. This transition is accompanied,
however, by the occurrence of latent heat, consistent with the fact that this
phase transition is of first order. With LAB ≈ 1.54µJ mol−1 at the melting
pressure, the latent heat is rather small [147]. Substantial supercooling can
occur at the A–B transition, whereas only modest superheating effects have
been observed [148]. At pressures below the polycritical point PCP and at
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4.1 Basic Properties of superfluid 3He

► pressure 28.7 bar

► jump at Tc 3He-N  à 3He-A

► jump                          at p = 0

► anomaly at TAB 3He-A  à 3He-B

► Transition A à B: latent heat 

b) Specific heat 4.1 Basic Experimental Facts 101
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Fig. 4.4. (a) Reduced specific heat C/R of 3He at a pressure of 28.7 bar as a
function of temperature. At Tc a clearly visible jump in C exists, while a weak
variation of C occurs at TAB [21]. (b) Specific heat of superfluid 3He at the melting
pressure as a function of the reduced temperature T/Tc in a magnetic field of
0.88 T [147]. The solid lines above TA1 and below TA2 are fits to zero-field data in
3He-N and 3He-A, respectively

zero magnetic field, the transition from normal-fluid to superfluid 3He leads
directly to the B phase and the small variation of the specific heat at TAB

due to the A–B transition disappears.
As discussed above, the A transition splits into two transitions A1 and A2

in an external magnetic field, whereas the B transition moves to lower tem-
peratures. The A2 phase is identical with the A phase at zero magnetic field.
The splitting of the A phase transition is clearly observed in specific heat
measurements. Figure 4.4b shows the temperature dependence of the specific
heat of liquid 3He in a magnetic field of 0.88 T. A discontinuity is found at
each of the transitions, with the A1 jump ∆CA1/CN = 0.74 at the melting
pressure being somewhat smaller than the jump at TA2 . The discontinuities
add up to the jump observed in zero magnetic field. The width of the A1 phase
is just 56 µK at B = 0.88T.

4.1.3 Superfluidity

Persistent currents and frictionless flow are fundamental properties of a su-
perfluid. The superfluidity of 3He in both the A and the B phase has been in-
vestigated in persistent-flow experiments [149–151] using the gyroscope prin-
ciple [152]. If a superfluid circulates in a ring in the xy-plane, a periodic
torque about the x-axis produces oscillations about the y-axis with an am-
plitude proportional to the angular momentum of the circulating superfluid.
One method to generate a persistent supercurrent is to cool the liquid be-
low the superfluid transition temperature and to rotate the cryostat about
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due to the A–B transition disappears.
As discussed above, the A transition splits into two transitions A1 and A2

in an external magnetic field, whereas the B transition moves to lower tem-
peratures. The A2 phase is identical with the A phase at zero magnetic field.
The splitting of the A phase transition is clearly observed in specific heat
measurements. Figure 4.4b shows the temperature dependence of the specific
heat of liquid 3He in a magnetic field of 0.88 T. A discontinuity is found at
each of the transitions, with the A1 jump ∆CA1/CN = 0.74 at the melting
pressure being somewhat smaller than the jump at TA2 . The discontinuities
add up to the jump observed in zero magnetic field. The width of the A1 phase
is just 56 µK at B = 0.88T.

4.1.3 Superfluidity

Persistent currents and frictionless flow are fundamental properties of a su-
perfluid. The superfluidity of 3He in both the A and the B phase has been in-
vestigated in persistent-flow experiments [149–151] using the gyroscope prin-
ciple [152]. If a superfluid circulates in a ring in the xy-plane, a periodic
torque about the x-axis produces oscillations about the y-axis with an am-
plitude proportional to the angular momentum of the circulating superfluid.
One method to generate a persistent supercurrent is to cool the liquid be-
low the superfluid transition temperature and to rotate the cryostat about

at p = 34.3 bar  (melting pressure)

► splitting of A transition in magnetic field

1st order phase transition

A1

A2  ≙ A (B = 0)

B = 0.88 T
p = 34.3 bar
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c) Superfluidity
persistent flow experiments

A phase:   

experiments are difficult

► only under pressure possible
► textures are important (more later on this)

persistent flow only meta stable 
and decays slowly

is 3He a superfluid?

B phase:   
persistent current experiments up to 48 h

no reduction of flow

drops by 12 orders of magnitude

82 3 Normal-fluid 3He
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Fig. 3.4. Magnetic susceptibility χ
of liquid 3He at 0.5 bar as a func-
tion of the temperature normalized
to the low-temperature limit χ0. The
solid line indicates the proportional-
ity χ ∝ 1/T at high temperatures
[122,123]

liquid, meaning that the magnetic susceptibility due to the nuclear spins
varies proportionally to 1/T , as expected from the Curie law . At low temper-
atures, the susceptibility becomes independent of temperature. This behavior
is expected for an ideal Fermi gas. In the free-fermion model the magnetic
susceptibility χ at low temperatures is given by

χ = I(I + 1)µ0 µ2
n g2

n
2
3

n

EF
= β2 D(EF) . (3.16)

Here, µn denotes the nuclear magnetic moment, gn the nuclear g-factor, I the
nuclear spin of the 3He atoms and D(EF) the density of states at the Fermi
energy. Note that the expression for the temperature-independent suscep-
tibility of liquid 3He at very low temperatures has the form of the Pauli
susceptibility of the conduction electrons in metals.

3.1.3 Transport Properties

The transport properties of a classical gas can be well described by means
of the Boltzmann equation in the framework of the kinetic theory of gases.
In this approach, the following expressions are found for the viscosity η, the
self-diffusion coefficient Ds, and the thermal conductivity λ:

η =
1
3

% v & , Ds =
1
3

v & , and Λ =
1
3

CV v & .

Here, & represents the mean free path of the gas atoms. The transport prop-
erties of an ideal Fermi gas can be described to a good approximation by the
same relations, but with the replacement of the thermal velocity v by the
Fermi velocity vF = (!/m)(3π2n)1/3. The mean free path is limited by the
scattering of the fermions, i.e., in our case by the scattering of 3He atoms
among each other. The corresponding mean collision time can by expressed
by τ = vF/&. Because of the exclusion principle the phase space for fermion
scattering is rather limited. To show this, we consider a system of fermions at

critical velocity is extremely low:      = 1 … 100 mm/s 
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its symmetry axis well above any critical velocity. After stopping the rota-
tion, the oscillation amplitude about the y-axis is recorded. In this way, the
persistent flow of a superfluid can be monitored.

From the fact that in such experiments no measurable reduction of the
flow of 3He-B could be detected over 48 h, one can conclude that the effective
viscosity of the superfluid component is at least 12 orders of magnitude lower
than the viscosity of normal-fluid 3He at the transition temperature. In the
case of 3He-A, persistent-flow experiments are somewhat problematic, since in
this phase a pronounced anisotropy exists. It seems, however, that persistent
currents are only metastable in the A phase, and thus slowly decay – about
1% per day. It is also found that the persistent currents are destroyed by
crossing the A–B transition line. Although cooling at rest, either from the
normal liquid into the A phase or across the A–B phase boundary, does not
produce a state with vs != 0, warming across TAB leads to the spontaneous
generation of a small persistent current in 3He-A. This flow is independent
of the magnitude and the direction of any persistent current that might have
been present in the B phase before warming.

The critical velocity at which flow is no longer frictionless is very low in
superfluid 3He, as shown in Fig. 4.5. Typically, one finds critical velocities
in the range 1 to 100 mm s−1. Although the mechanism responsible for these
very low critical velocities has not been unambiguously identified, it seems
clear that the formation of vortex rings and the breaking of quasiparticle
pairs (see Sect. 4.2) play an important role.
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Fig. 4.5. Dependence of the critical
velocity of 3He-B in a superleak on
the size of the pores. The data are
taken at different temperatures and
pressures and have been normalized
to the value at 29 bar and T/Tc = 0.5
[149,150,153,154]

4.1.4 Nuclear Magnetic Resonance (NMR)

An investigation of the nuclear spins of 3He atoms provides a means to
obtain detailed information on the dynamical properties of the liquid. In
a constant magnetic field B0, a spin-1/2 system has only two possible

reasons: vortex rings and pair breaking

flow of 3He-B through thin capillaries

► drops linear with d :

compare He-II

70 2 Superfluid 4He – Helium II

Figure 2.49 shows the results of experiments with capillaries of different
diameters. In these measurements, the normal-fluid component was blocked
by a fine powder. The data suggest the relation vc ∝ d−1/4 between the
capillary diameter d and the critical velocity vc, although theoretical consid-
erations would favor vc ∝ d−1.
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Fig. 2.49. Product vcd of the criti-
cal velocity and the capillary diame-
ter plotted as a function of the dia-
meter d [107]

Finally, we mention that for extended samples, networks of vortices –
similar to the dislocation networks in solids – play an important role and
have stimulated extensive theoretical work [108].

2.6 Critical Phenomena Near the Lambda Point

We have seen that many of the properties of 4He exhibit a sudden change at
the lambda point at Tλ = 2.17 K. As mentioned before, the origin of these
changes is the continuous phase transition that occurs in liquid helium. The
investigation of phase transitions is of general importance in physics. Since
helium is a very clean substance consisting of extremely simple constituents,
there has been considerable interest in the investigation of the properties of
liquid helium in the vicinity of the phase transition. The hope was that with
such a well-defined system, fundamental questions can be investigated that
are of relevance in a broader context.

2.6.1 Brief Theoretical Background

The behavior near a critical point is determined by quantities that vanish,
such as an order parameter, or by quantities that diverge, such as specific
heat or susceptibility. Qualitative descriptions of the critical behavior of some
special systems were already given around the turn of the 19th century. Ex-
amples are the transition between liquid and gas [109] and the transition
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4.1 Basic Properties of superfluid 3He

d) NMR experiments
no comparison with He-II possible             still revealing!

3He: nuclear spin  I =1/2,    Lamor frequency   

► 3He-N calculated Lamor frequency is observed
► 3He-A, 3He-B             very surprising effects

transverse rf field  (normal geometry)

4.1 Basic Experimental Facts 103

orientations. In this case, the resonance frequency, or Larmor frequency is
given by ωL = γ|B0|, where γ represents the gyromagnetic ratio.

For isolated 3He atoms and for 3He-N, one finds experimentally the ex-
pected frequency ωL. However, in superfluid 3He several anomalies are ob-
served. We briefly introduce some of the remarkable features. A more detailed
discussion of the spin dynamics in superfluid 3He is presented in Sect. 4.5.

Transverse rf Fields

The first NMR experiments on superfluid 3He were carried out in 1972 to
clarify whether the newly discovered phases occur in liquid or in solid 3He.
Figure 4.6 shows the NMR spectra at different temperatures obtained in these
early investigations. The experiments were performed using a Pomeranchuk
cell (see Sect. 11.5) that contained both liquid and solid 3He. The large, nearly
temperature independent, pair of resonance lines1 are due to the nuclear spins
in solid 3He. At T = Tc, the absorption lines in the solid and the liquid phase
(grey tinted) lie on top of each other. Below Tc, the absorption line of the
nuclear spins in the liquid is shifted towards higher frequency. This frequency
shift grows with decreasing temperature. The total shift at each temperature
is indicated by a double arrow . The line shape of the resonance originating in
the liquid phase did not change significantly with temperature and is similar
to that observed in 3He-N.
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Fig. 4.6. Transverse NMR absorption spectra observed in a mixture of solid and
liquid 3He at the melting pressure for different temperatures [142]. The grey tinted
line corresponds to the absorption line in the liquid phase

1 The origin of the doublet structure of the resonance line of solid 3He is an
experimental artifact and of no interest to our discussion.

► measurement in Pomeranchuk cell by D. Osheroff
► double line because  3He-A and solid 3He are in cell
► NMR line shifts to higher frequencies with lower T

► empirical relation: 
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4.2 Relevance of the Two-Fluid Model

a) Flow through thin capillaries

example: 3He-B: flow through 1000 parallel channels, 
diameter            , length     

104 4 Superfluid 3He

The resonant frequency in the superfluid A phase is higher than the one
in the solid phase. The temperature-dependent shift is rather large. From this
we can conclude that there must be a large additional magnetic field present
in the superfluid phase that is absent in the case of normal-fluid 3He. In 1972
Leggett showed that the frequency shift originates from the magnetic dipole–
dipole interaction between the spins and that the macroscopic coherence in
the superfluid state leads to a large enhancement of this additional magnetic
field [155]. Note that a corresponding frequency shift of the transverse res-
onance is absent in the B phase. At the A–B phase transition, the shifted
line abruptly disappears. This striking difference has helped to identify the
microscopic nature of the two superfluid phases.

Longitudinal rf Fields

A further remarkable effect occurs in the nuclear resonance of 3He. In the su-
perfluid state there exists a resonant absorption at a well-defined frequency
with the rf magnetic field applied parallel to the dc magnetic field. In this
case, the energy splitting of the spin states is modulated by the rf field. In
normal-fluid 3He the application of an rf field results in relaxation processes
for the spin system to reach the momentary equilibrium. In 3He-A, how-
ever, no relaxation is observed, instead a resonant effect occurs. As we will
see in Sect. 4.5, this so-called longitudinal resonance is also a result of the
magnetic dipole–dipole interaction. A longitudinal resonance with somewhat
higher frequency is also observed in 3He-B. We will discuss the origin of these
phenomena in Sect. 4.5.

4.2 Relevance of the Two-Fluid Model

We have seen in Chap. 2 that the two-fluid model successfully describes many
properties of helium II. In this section we discuss some basic experiments
indicating that the superfluid phases of 3He can be described, at least to some
extent, with the phenomenological two-fluid model introduced in Sect. 2.2.
For low frequencies in the so-called macroscopic limit, a two-fluid model for
superfluid 3He has been derived based on a microscopic picture [156].

4.2.1 Flow Experiments

The anomalous behavior of liquid 4He flow through thin capillaries below Tλ

was historically an important indication for the superfluidity of helium II.
Figure 4.7 shows the result of corresponding experiments with 3He-B. In
this measurement the flow through 1000 parallel channels with a diameter of
0.8µm and a length of 10µm was investigated.

According to the Hagen–Poiseuille law (2.1) one would expect the mass
current js to depend linearly on the pressure gradient along the channels.
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Fig. 4.7. Mass flow density js of
3He-B through 1000 thin parallel
capillaries with a diameter of 0.8 µm
and a length of 10µm as a function
of the pressure gradient ∆p at dif-
ferent temperatures [157]

In contrast, the flow of 3He-B is nearly constant, similar to the behavior of
helium II. This can be explained by the frictionless flow of the superfluid com-
ponent, which is limited by a critical velocity. It is remarkable that even at
the lowest pressures a significant mass flow occurs. With decreasing temper-
ature the mass flow increases, as expected from the two-fluid model, because
the ratio !s/! becomes larger upon cooling. In addition, the temperature
dependence of js is influenced by the variation of the critical velocity.

4.2.2 Normal-Fluid Density

The central tenet of the two-fluid model is that the properties of the super-
fluid can be described in terms of interpenetrating normal-fluid and superfluid
components. Numerous studies of superfluid 3He have been performed to de-
termine the densities of these two components. For example, we shall discuss
in Sect. 4.8 the determination of !s/! by fourth-sound measurements.
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Fig. 4.8. Normalized normal-fluid den-
sity !n/! of 3He-B as a function of the
reduced temperature T/Tc [158]

► significant flow without pressure
► js depends only weakly on pressure (as for He-II)
► js increases with decreasing temperature 

rises with decreasing temperature   (as for He-II)

temperature dependence of the critical velocity vc(T)
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Andronikashvili-type experiment 3He-B 

► increases with temperature (as for He-II)
► detailed temperature dependence different

106 4 Superfluid 3He

In an Andronikashvili-type experiment involving a torsional oscillator,
the temperature dependence of the normal-fluid density !n of 3He-B has
been measured. The results of this measurement are shown in Fig. 4.8. As
expected from the two-fluid model, below Tc the normal-fluid component
decreases monotonically with decreasing temperature and vanishes for T → 0.
However, there is an obvious difference in the temperature dependence of
!n/! compared to helium II. We will discuss the reason for this difference in
Sect. 4.7. The results of analogous experiments with 3He-A are much more
complex, since one finds a pronounced anisotropy (see Sect. 4.4.3).

4.2.3 Viscosity

The viscosity of the normal-fluid component of 3He-B has also been inves-
tigated in a number of different experiments. At the transition tempera-
ture, the viscosity is very high, but below Tc it drops quite rapidly (see
Fig. 3.5). Figure 4.9a shows the temperature dependence of the shear viscos-
ity of the normal-fluid component ηn as determined in different experiments
at pressures of about 20 bar. The solid line represents a curve calculated for
bulk 3He. The data taken with different apparatus agree only at high tem-
peratures T/Tc > 0.6. In this range, the theoretical curve also fits very well.
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Fig. 4.9. (a) Normalized viscosity of the normal-fluid component ηn of 3He-B as a
function of the reduced temperature T/Tc. The solid line represents a theoretical
curve for bulk 3He [159] without taking surface effects into account. The data
have been obtained in different experiments [160, 161]. (b) Normalized effective
shear viscosity of the normal-fluid component of superfluid 3He-B at 20 bar versus
reduced temperature T/Tc. The dashed line depicts the prediction for bulk 3He, the
solid lines have been calculated including slip effects, considering (1) diffusive and
(2) diffusive and Andreev scattering (for the latter process see Sect. 4.7.3) [162]. The
data (open circles) have been obtained using a torsional oscillator with a spacing
of 135µm [163]

than for He-II
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4.2 Relevance of the Two-Fluid Model

c) Viscosity

106 4 Superfluid 3He
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► theory for bulk 3He-B fits well above 0.5 T/Tc

► deviations below 0.5 T/Tc 

► --- theory for bulk 3He-B
► (1) diffusive scattering
► (2) diffusive scattering and Andreev reflection

interaction with wall dominates

3He-A: much more complicated behavior: 
influence of magnetic fields, vessel geometry, textures, velocity fields, …
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4.3 Quantum States of Superfluid 3He

Cooper pairs:  

3He pairs:       strong magnetic exchange interaction   (pairs of quasi particles)

108 4 Superfluid 3He

3He atoms. As discussed in Sects. 3.2 and 3.3, the Landau Fermi-liquid theory
is an adequate description of the normal-fluid phase 3He-N. Although it is
not possible to obtain the superfluid ground state by slowly switching on the
interactions between the particles – as in the case of the Fermi-liquid theory –
it is still possible to describe the superfluid state of 3He as occurring from
the formation of pairs of quasiparticles. The strongly repulsive core poten-
tial, together with the exchange interaction, favors a parallel alignment of the
spins in pairs of quasiparticles. We can roughly picture the attractive inter-
action between two quasiparticles in the following way: As we have seen in
Chap. 3, the nuclear magnetic susceptibility of normal 3He is extraordinarily
high at very low temperatures. This means that below about 100 mK, 3He
is magnetically soft and a nuclear spin can easily polarize its surrounding
ferromagnetically. Thus, parallel alignment of the quasiparticles in pairs is
energetically favored.

In contrast to conventional BCS superconductors, in which the Cooper
pairs have total spin S = 0, quasiparticle pairs are formed with S = 1 in
superfluid 3He. Since the spin wave function with S = 1 is symmetric upon
the exchange of the two particles, the exclusion principle only allows for
fermions odd quantum numbers for the orbital momentum (L = 1, 3, . . . ).
In superfluid 3He the pairs have S = 1 and L = 1. This type of pair formation
is known as spin triplet or odd parity pairing .

4.3.1 Spin-Triplet Pairing

The spin state of the quasiparticle pairs is determined by |S, Sz〉. Since
the z-component of a spin system with S = 1 has three possible values,
Sz = 0, ± 1, there are three different spin states:
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