

4

 energy of one quasi particle is given by the energy of an isolated atom plus, the interaction with all other atoms

quasi particle states are not eigenstates

SS 2022

MVCMP-1

How does the distribution function look like? - does the Fermi distribution still hold?

Yes, as long as the energy levels (states) are well-defined!

ightarrow broadening of levels $\delta E pprox \hbar/ au$

collision time, lifetime

• quasi particle states are well-defined as long as the uncertainty is small compared to the thermal broadening $\Delta E \approx k_{\rm B}T$

4

this condition can always be fulfilled at sufficiently low temperatures, since

$$au \propto rac{1}{T^2}$$
 ($\delta E \propto T^2$)

SS 2022

MVCMP-1

some numbers:
$$au \approx 5 imes 10^{-11} rac{1}{T^2} \left[rac{1}{
m s}
ight]$$

$$\tau \approx 1 \times 10^{-12} \frac{1}{T^2} \left[\frac{1}{\mathrm{s}} \right]$$

Fermi gas

experimental result

$$\Delta E \approx k_{\rm B}T \longrightarrow T = 0.1 \, {\rm K}$$

Fermi distribution holds $f(E,T) = \frac{1}{\mathrm{e}^{(E-\mu)/k_{\mathrm{B}}T}+1}$

Landau theory is good for $\,T \ll 0.1\,{
m K}\,$ in case of ³He

What is the dispersion relation ?

SS 2022

MVCMP-1

$$T
ightarrow 0$$
 , states at $E_{
m F}$: $p_{
m F} = \hbar \left(3 \pi^2 n
ight)^{1/3}$

general expression for states near Fermi level

dispersion of quasi particles

$$E=E_{\mathrm{F}}+rac{p_{\mathrm{F}}}{m^{st}}\left(p-p_{\mathrm{F}}
ight)$$

density of states at Fermi level

$$D(E_{
m F}) = rac{m^{*}k_{
m F}}{\pi^{2}\hbar^{2}} = rac{m^{*}}{\pi\hbar^{2}}\sqrt[3]{rac{3n}{\pi}}$$

Central problem: Interaction term

 $h(\boldsymbol{p}, \boldsymbol{p}') = h(\Theta)$

SS 2022

MVCMP-1

- energy of quasi particles depends on the configuration of all quasi particles
- E(p,T) changes when the occupation of states with p' differ by $\delta f(p')$ from the one at T=0

Phenomenological ansatz (without spin term)

cannot be derived

$$E(\boldsymbol{p},T) = E(\boldsymbol{p},0) + 2\varrho_k \int h(\boldsymbol{p},\boldsymbol{p}') \,\delta f' \,\mathrm{d}^3 p'$$
$$h(\boldsymbol{p},\boldsymbol{p}') = \frac{\partial^2 U}{\partial f(\boldsymbol{p}) \,\partial f'(\boldsymbol{p}')} \qquad \text{interaction term}$$

- $D(E_{\rm F}) h(\boldsymbol{p}, \boldsymbol{p}')$ corresponds to the scattering amplitude
- \blacktriangleright like for a Fermi gas only states at the Fermi surface are important $~~p~pprox~p'~pprox~p_{
 m F}$
 - $ightarrow h(m{p},m{p}')$ depends only on the angle Θ between $m{p}'$ and $m{p}$

Treatment of interaction term

SS 2022

MVCMP-1

consider new function: $F(\Theta) = D(E_{\rm F}) h(\Theta)$

expansion in terms of Legendre polynomials

$$F(\Theta) = \sum_{i} F_{i} P_{i}(\cos \Theta) = F_{0} + F_{1} \cos \Theta + F_{2} \frac{3\cos^{2} \Theta - 1}{2} + \dots$$

these coefficients can (only) be determined experimentally

general expression with spin term: $\mathcal{F}(\boldsymbol{p},\boldsymbol{s},\boldsymbol{p}',\boldsymbol{s}') = h(\boldsymbol{p},\boldsymbol{p}') + \xi(\boldsymbol{p},\boldsymbol{p}') \ \boldsymbol{s}\cdot\boldsymbol{s}'$ spin term

consider new function for spin term: $G(\Theta) = D(E_{\rm F}) \xi(\Theta)$

expansion in terms of Legendre polynomials

$$G(\Theta) = D(E_{\rm F})\,\xi(\Theta) = \sum_{i} G_i P_i(\cos\Theta) = G_0 + G_1\cos\Theta + \dots$$

these coefficients can (only) be determined experimentally

3.2 The Landau Fermi-Liquid Theory

Application to liquid ³He (not trivial)

(i) effective mass

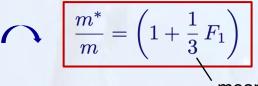
SS 2022

MVCMP-1

$$\frac{1}{m} = \frac{1}{m^*} + \frac{p_{\rm F}}{\hbar^3} \int F(\Theta) \cos \Theta \mathrm{d}\Gamma$$

solid angle segment of Fermi surface

normal pressure



mean value of $F_1 \cos \Theta$

experimental results

pure ³He:

 $rac{m^*}{m}pprox 3$ norma $rac{m^*}{m}pprox 6$ 30 bar $rac{m^*}{m}pprox 2.4$

m

Landau's Fermi liquid theory can be tested varying pressure and ³He concentration

1% 3 He in 4 He:

(ii) specific heat

SS 2022

MVCMP-1

$$C = \frac{m^*}{m} C_{\rm FG} = \left(1 + \frac{1}{3} F_1\right) C_{\rm FG}$$
$$\bigcirc \quad C \propto T \quad \text{at} \quad T \ll T_{\rm F}^* \qquad \qquad T_{\rm F}^*$$

 $T_{\rm F}^*\approx 0.5\,{\rm K}$

(ii) sound velocity (first sound)

$$v_1^2 = rac{p_{
m F}^2}{3m^2} \; rac{1+F_0}{1+rac{1}{3}F_1} = \; rac{1}{3} \; v_{
m F}^2 \; rac{1+F_0}{1+rac{1}{3}F_1}$$

(iii) magnetic susceptibility

$$\chi = \frac{m^*}{m} \left(\frac{1}{1 + \frac{1}{4}G_0}\right) \chi_{\rm FG}$$

$$-2.8$$

compare to: $v=rac{1}{3}v_{
m F}$ Fermi gas

$$\begin{aligned}
\mathcal{V}_{i}^{2} = \left(\frac{\partial \rho}{\partial s}\right)_{s} &= N \frac{\partial \mu}{\partial N} \quad \left(\text{grad } \mu = \frac{1}{s} \text{grad } \rho \right) \\
\text{with } \mu = E_{F} = E(P_{F}) \\
\text{Since } P_{F} = t_{h} \left(3\pi^{2} \frac{N}{V}\right)^{\frac{N}{3}} \sqrt{\frac{\partial \mu}{\partial N}} \quad \sqrt{\frac{\partial \mu}{\partial \rho_{F}}} \\
\mathcal{V}_{i}^{2} &= \frac{\rho_{F}}{3m} \frac{\partial \mu}{\partial \rho_{F}} \\
&= \frac{\rho_{F}}{sm} \left[-\frac{\rho_{F}}{m} + \frac{2\rho_{F}^{2}}{t_{3}^{2}} \int F(\theta) \left(1 - \cos \theta\right) d\Gamma^{T} \right] \\
&= \frac{\rho_{F}}{sm^{2}} \left(\frac{1 + F_{0}}{1 + \frac{4}{s}E} \right)
\end{aligned}$$

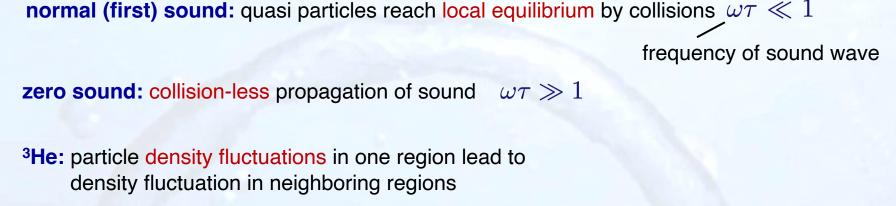
• enhancement of susceptibility $\uparrow\uparrow$ against Fermi statistics $\downarrow\uparrow$

if exchanged interaction larger by a factor 2 $\longrightarrow 1 + \frac{1}{4}G_0 < -1$ and ground state would be ferromagnetic

Landau Fermi liquid parameters for ³He

SS 2022 MVCMP-1

$p~(\mathrm{bar})$	$V_{ m m}~({ m cm}^3)$	F_0	F_1	G_0	m^*/m
0	36.84	9.30	5.39	-2.78	2.80
3	33.95	15.99	6.49	-2.89	3.16
6	32.03	22.49	7.45	-2.93	3.48
9	30.71	29.00	8.31	-2.97	3.77
12	29.71	35.42	9.09	-2.99	4.03
15	28.89	41.73	9.85	-3.01	4.28
18	28.18	48.46	10.60	-3.03	4.53
21	27.55	55.20	11.34	-3.02	4.78
24	27.01	62.16	12.07	-3.02	5.02
27	26.56	69.43	12.79	-3.02	5.2 <mark>6</mark>
30	26.17	77.02	13.50	-3.02	5.50
33	25.75	84.79	14.21	-3.02	5.74

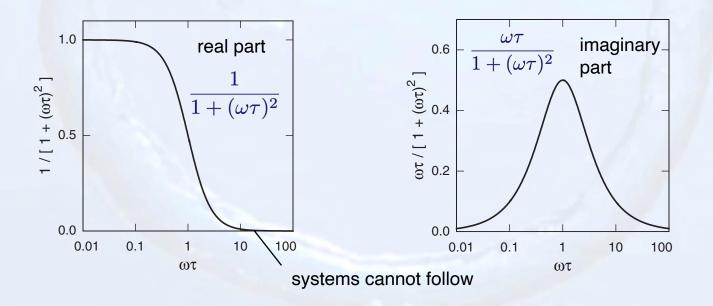


propagation of sound-like modes zero sound

SS 2022

MVCMP-1

Debye relaxation process (transition from hydrodynamic regime to collision-less regime)



- ▶ high $T: \omega \tau \ll 1$ → hydrodynamic regime: first sound
- ▶ low $T: \omega \tau \gg 1 \longrightarrow$ collision-less regime: zero sound, longitudinal

transversal collision-less spin waves

compare with classical gas

mean free path > wavelength ---- no sound propagation

but ³He

SS 2022

MVCMP-1

- strongly interacting particles
- force on quasiparticle does not stem from direct neighbors, but from all atoms
- density fluctuations can propagate without collisions
- transversal modes are also possible

General theoretical description of zero sound is rather complicated — here only results

- collective modes with $\omega \tau \gg 1 \longrightarrow$ zero sound
- 2 different sound modes (similar to first sound) and collision-less spin waves

longitudinal sound:

SS 2022

MVCMP-1

$$v_{1} = \frac{v_{\rm F}}{3} \sqrt{\frac{(1+F_{0})}{(1+\frac{1}{3}F_{1})}} \qquad \omega\tau \ll 1$$
$$v_{0} = v_{1} \left[1 + \frac{2}{5} \left(\frac{1+\frac{1}{5}F_{2}}{1+F_{0}} \right) \right] \qquad \omega\tau \gg 1$$

. .

difference of zero and first sound:
$$\displaystyle rac{v_0-v_1}{v_1}$$

 $\frac{v_0 - v_1}{v_1} = \frac{2}{5} \frac{\left(1 + \frac{1}{5}F_2\right)}{(1 + F_0)}$ $\longrightarrow (v_0 - v_1) \approx 6 \,\mathrm{m \, s^{-1}}$

intermediate temperatures:

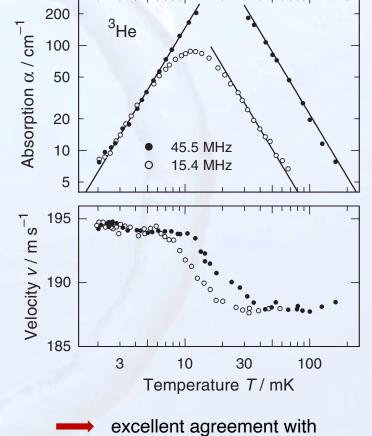
$$\frac{v}{v_1} = 1 + \frac{v_0 - v_1}{v_1} \frac{\omega^2 \tau_{\rm s}^2}{1 + \omega^2 \tau_{\rm s}^2}$$

sound attenuation:

$$\frac{\alpha v}{\omega} = -2 \, \frac{v_0 - v_1}{v_1} \, \frac{\omega \tau_{\rm s}}{1 + \omega^2 \tau_{\rm s}^2}$$

limiting cases:

$$\alpha_1 = A_1 \omega^2 \tau \propto \omega^2 T^{-2}$$
$$\alpha_0 = A_0 \tau^{-1} \propto T^2$$



Landau theory

transversal sound:

SS 2022

MVCMP-1



 $\omega \tau \ll 1$ hydrodynamical regime \longrightarrow diffuse shear mode ³He

 $\omega \tau \gg 1$ real solution for $F_1 > 6$

impossible at normal pressure: $F_1 = 5.2$

but F_1 depends on pressure

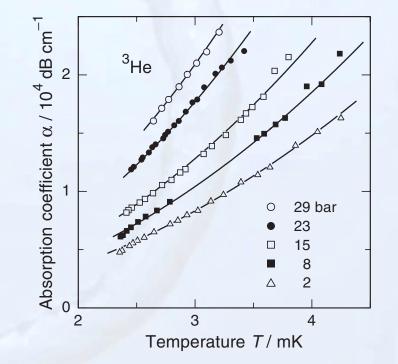
 $F_1 = 5.2 \dots 15$

melting pressure

attenuation: $lpha_0 \propto T^2$

experimental results

- narrow T range, very high damping
- sound transducers spaced by 25 μ m
- damping depends on pressure



collision-less spin waves: (predicted by Silin 1957)

spin transport
$$D_{
m s} = rac{1}{3} au_{
m D} v$$

SS 2022

MVCMP-1

t
$$D_{
m s} = rac{1}{3} \, au_{
m D} \, v_{
m F}^2 \, \left(1 + rac{1}{4G_0}
ight)$$

 $\omega \tau \ll 1$

 $\omega \tau \gg 1$

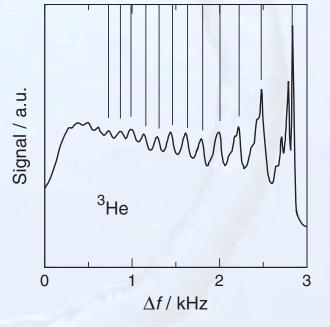
spin transport

normal spin diffusion

collision-less spin waves

experimental results

- standing spin waves
- linear magnetic field gradient $44 \,\mathrm{mT \, m^{-1}}$
- rectangular absorption "line"
- maxima of spin wave resonance on top



4

Dispersion of zero sound modes:

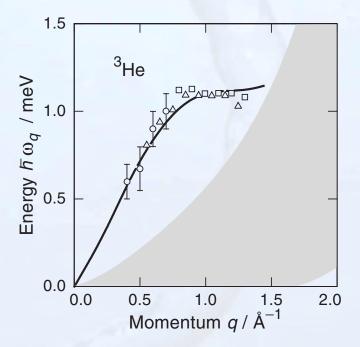
experimental determination very difficult

capture cross section very high

SS 2022

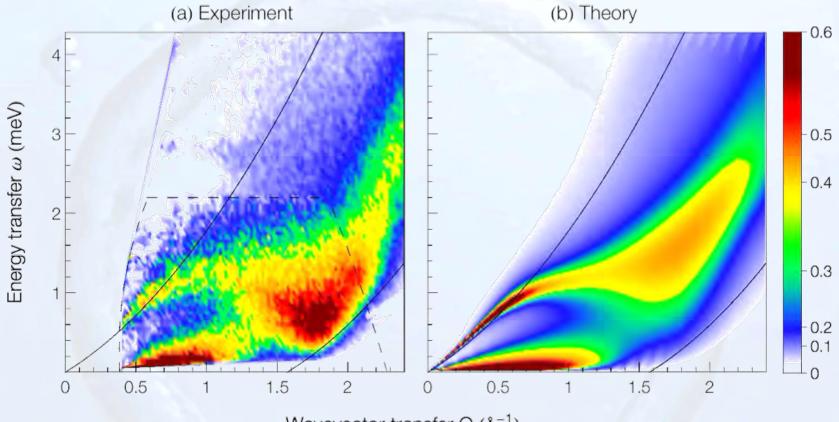
MVCMP-1

ultralow temperatures T < 20 mK



SS 2022

MVCMP-1



Wavevector transfer Q (Å⁻¹)