

3) Normalfluid ³He

First measurements 1949 (from natural abundence)

Landau theory of Fermi liquids 1956-1958

prediction of zero sound and collision-less spin waves

with

3.1 Ideal Fermi-Gas

Schrödinger equation

$$-rac{\hbar^2}{2m}
abla^2\psi(m{r})=E\psi(m{r})$$

ansatz:

fixed boundary conditions:

$$k_x = rac{2\pi}{L} n_x \,, \quad k_y = rac{2\pi}{L} n_y \,, \quad k_z = rac{2\pi}{L} n_z$$

 $[n_x, n_y, n_z]$

integer values

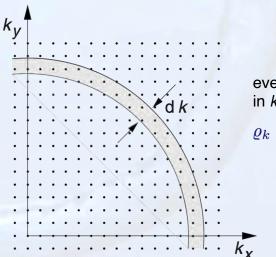
density of states

$$\mathcal{D}(k)\mathrm{d}k = \frac{\varrho_k 4\pi k^2 \mathrm{d}k}{2\pi^2} k^2 \mathrm{d}k$$

 $D(k) = \frac{2\mathcal{D}(k)}{V} = \frac{k^2}{\pi^2}$

density *k* space density per volume for 2 spin states

$$D(E) = D(k) \frac{\mathrm{d}k}{\mathrm{d}E} = \frac{(2m)^{3/2} \sqrt{E}}{2\pi^2 \hbar^3} \propto \sqrt{E}$$



even distribution in *k* space density

$$Q_k = (L/2\pi)^3 = V/(2\pi)^3$$

Fermi-Dirac distribution

SS 2022

MVCMP-1

$$f(E,T) = \frac{1}{\mathrm{e}^{(E-\mu)/k_{\mathrm{B}}T}+1}$$
 chemical potential $\mu = f(E,T) = \frac{1}{2}$

$$(E,T)$$

 $T=0$ all states are $E < \mu$ occupied
 E
 $E_{\rm F} \equiv \mu(T=0)$

Fermi Energy

$$n = \frac{N}{V} = \int_{0}^{\infty} D(k)f(E,T) \,\mathrm{d}k = \int_{0}^{\infty} D(E)f(E,T=0) \,\mathrm{d}E$$

Fermi Temperature $E_{\rm F} = k_{\rm B}T_{\rm F}$

$$T_{\mathrm{F}}=rac{\hbar^2}{2mk_{\mathrm{B}}}\left(3\pi^2n
ight)^{2/3}$$
 34

³He: $T_{\rm F} \approx 4.9 \, {\rm K}$

Internal energy

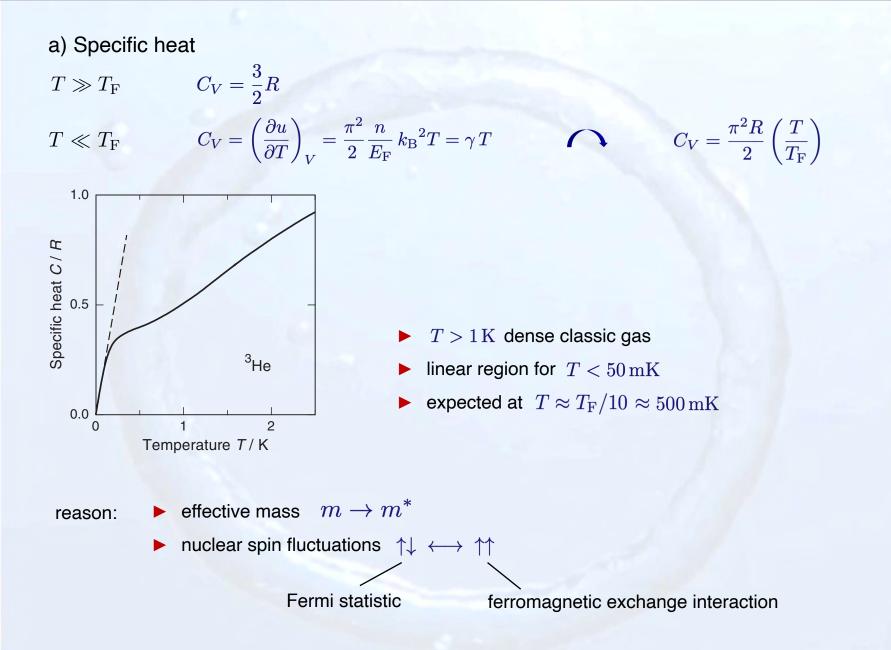
approximate solution for $\,T \ll E_{
m F}/k_{
m B}$

$$u = \frac{U}{V} = \int_{0}^{\infty} D(E) f(E,T) E dE \qquad \longrightarrow \qquad u(T) = \frac{3}{5} n k_{\rm B} T_{\rm F} + \frac{\pi^2}{4} \frac{n}{E_{\rm F}} (k_{\rm B} T)^2$$

const.

SS 2022

MVCMP-1



large distances (low density) Fermi statistic dominates

short distances (high density)

strong ferromagnetic exchange

Paramagnon model (phenomenological description)

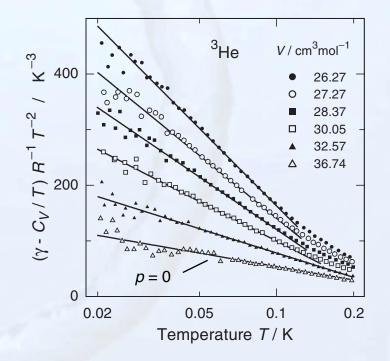
idea: fluctuating ferromagnetic regions \rightarrow size and concentration depend on T

 $T < 0.2 \,\mathrm{K}$

$$C_V = \gamma T + \Gamma T^3 \ln\left(\frac{T}{\Theta_{\rm c}}\right)$$

- plotted as $(\gamma C_V/T)/(RT^2)$ vs $\log T$
- different pressure different density
- $\log(T/\Theta_{\rm c})$ is visible

slope proportional to spin correlation contribution

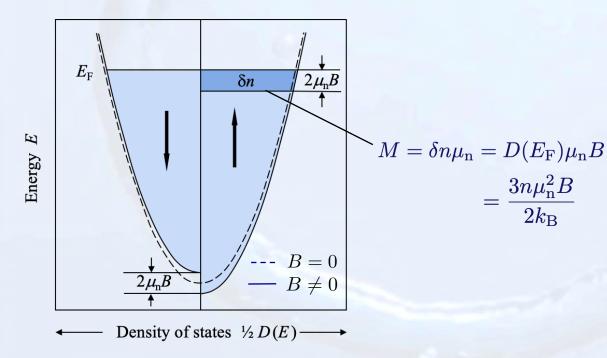


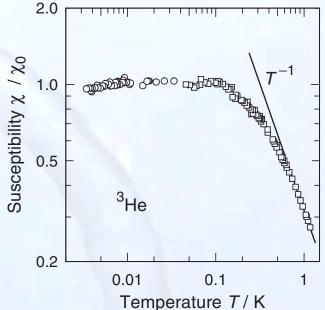
b) Magnetic nuclear spin susceptibility $\chi = \frac{M}{H}$

• high temperatures: $\chi \propto \frac{1}{T}$

low temperatures: $\chi = I(I+1) \mu_0 \mu_n^2 g_n^2 \frac{2}{3} \frac{n}{E_F} = \beta^2 D(E_F)$

Low temperatures: Pauli susceptibility





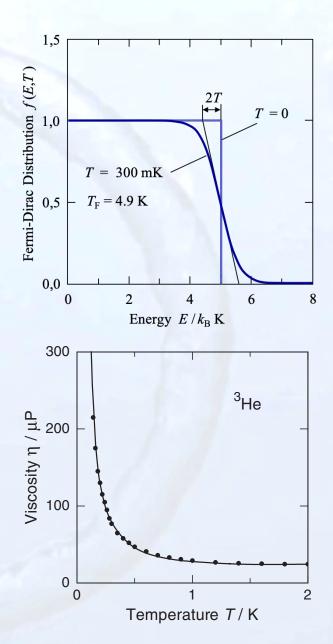
c) Transport properties

Boltzmann equation \longrightarrow kinetic gas theory

(i) viscosity
$$\eta = \frac{1}{3} \varrho v \ell = \frac{1}{3} \varrho \tau v_{\rm F}^2$$
$$\searrow \tau = v_{\rm F}/\ell$$
$$v_{\rm F} = (\hbar/m)(3\pi^2 n)^{1/3}$$

$$\tau^{-1} \propto \left(\frac{k_{\rm B}T}{E_{\rm F}}\right)^2 \quad \frown \quad \tau \propto \left(\frac{T_{\rm F}}{T}\right)^2 \propto \frac{1}{T^2}$$

- high temperatures: $\eta = 25 \,\mu P = const$
- ▶ low temperatures: $\eta^{-1} \propto T^2$
- ▶ 2 mK: $\eta = 0.2 \,\mathrm{P}$ like honey!



viscosity at ultra-low temperatures

→
$$\eta^{-1} \propto T^2$$
 as expected
→ phase transition occurring at ~ 2 mK

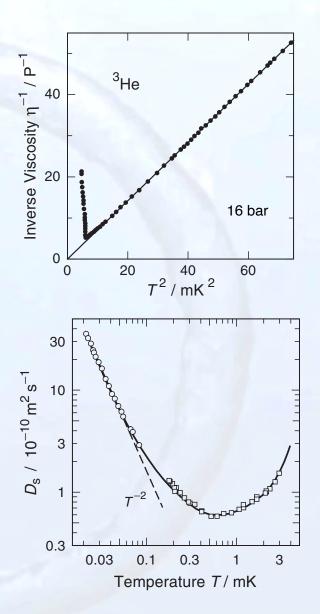
(ii) Self-diffusion coefficient

diffusion of nuclear spins

$$D_{\rm s} = \frac{1}{3} v \ell \longrightarrow D_{\rm s} = \frac{1}{3} \tau v_{\rm F}^2$$

low temperatures: $D_{
m s} \propto au \propto rac{1}{T^2}$

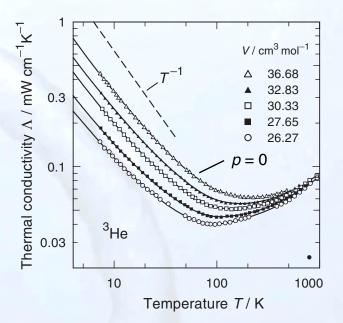
 \blacktriangleright high temperatures: dense classical gas $D_{
m s} \propto T$



(iii) Thermal conductivity

$$\Lambda = \frac{1}{3} C_V v \ell \qquad \longrightarrow \qquad \Lambda = \frac{1}{3} C_V \tau v_{\rm F}^2$$

- low temperatures: $C \propto T$ $\tau \propto T^{-2}$ $\Lambda \propto T^{-1}$ and paramagnon contributions
- high temperatures: dense classical gas
- ▶ very small absolute value: $\Lambda \approx 10^{-4} \, \mathrm{W \, cm^{-1} K^{-1}}$ at 200 mK



Is ³He a Fermi gas?

1	$^{3}\mathrm{He}$	Fermi Gas	Ratio
$C_V / \gamma T$	2.78	1.00	2.78
$v = v_{\rm F} / \sqrt{3} \; ({\rm m s^{-1}})$	188	95	1.92
$\chi/eta^2~(\mathrm{Jm^3})^{-1}$	$3.3 imes 10^{51}$	$3.6 imes 10^{50}$	9.1

deviations are not too big, but still significant and in addition differently large for different properties

collective excitations $\hat{=}$ quasi particles

Landau theory of Fermi liquids 1956-1958

prediction of zero sound and collision-less spin waves

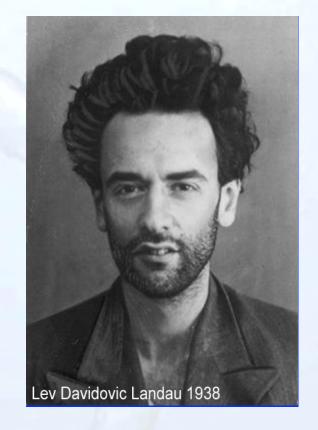
Basic idea

SS 2022

MVCMP-1

- interaction does change the energy of particles, but not momentum!
- plausible since momentum states are given by boundary conditions

for each state in the Fermi gas there is a corresponding state in the liquid, but with modified energy



Quasi-particle concept

SS 2022

MVCMP-1

important: total energy is not given by the sum of all individual states (isolated atoms)

 $U \neq \sum_{i} f_i E_i$

Landau's Gedankenexperiment

consider that the interaction is switched on slowly

number of states does not change

E _i	E _i	
Ideal Fermi Gas	Fermi Liquid	

number of quasi particles per volume analog to Fermi gas

energy of one quasi particle is defined by the change of energy of the complete system when a quasi particle is added:

$$\delta u = \int E \, \delta f \, \mathrm{d}^3 k$$

$$\delta U = \int E \, \delta f \, \mathrm{d}^3 k$$

$$\delta U = \int E \, \delta f \, \mathrm{d}^3 k$$

$$\delta U = \int E \, \delta f \, \mathrm{d}^3 k$$

$$\delta U = \int E \, \delta f \, \mathrm{d}^3 k$$

$$\delta U = \int E \, \delta f \, \mathrm{d}^3 k$$

$$\delta U = \int E \, \delta f \, \mathrm{d}^3 k$$

$$\delta U = \int E \, \delta f \, \mathrm{d}^3 k$$

$$\delta U = \int E \, \delta f \, \mathrm{d}^3 k$$

$$\delta U = \int E \, \delta f \, \mathrm{d}^3 k$$

$$\delta U = \int E \, \delta f \, \mathrm{d}^3 k$$

$$\delta U = \int E \, \delta f \, \mathrm{d}^3 k$$

$$\delta U = \int E \, \delta f \, \mathrm{d}^3 k$$

$$\delta U = \int E \, \delta f \, \mathrm{d}^3 k$$

$$\delta U = \int E \, \delta f \, \mathrm{d}^3 k$$

$$\delta U = \int E \, \delta f \, \mathrm{d}^3 k$$

$$\delta U = \int E \, \delta f \, \mathrm{d}^3 k$$

$$\delta U = \int E \, \delta f \, \mathrm{d}^3 k$$

$$\delta U = \int E \, \delta f \, \mathrm{d}^3 k$$

$$\delta U = \int E \, \delta f \, \mathrm{d}^3 k$$

$$\delta U = \int E \, \delta f \, \mathrm{d}^3 k$$

$$\delta U = \int E \, \delta f \, \mathrm{d}^3 k$$