

vortex rings

SS 2022

MVCMP-1

kinetic energy of vortex ring: He-II $\ arrho
ightarrow arrho_{
m s}$

$$E_{\rm vr} = \int \frac{1}{2} \rho_{\rm s} v_{\rm s}^2 \mathrm{d}V = \frac{1}{2} \rho_{\rm s} \kappa^2 r \left[\ln \left(\frac{8r}{a_0} \right) - \frac{7}{4} \right] \quad \propto r$$

momentum of vortex ring $p_{
m vr}=\pi arrho_{
m s}\kappa r^2$

dispersion of vortex ring

2.7 Motion of lons in He-II

Explanation of the experiment by Rayfield and Reif

- generation of vortex rings
- ions are captured by vortex ring
- field increases kinetic energy of vortex ring

 $v_{
m vr} \propto rac{1}{r} \propto rac{1}{E_{
m vr}}$

• theory line with $a_0 = 1.2$ Å

let's revisit the flow experiments through capillaries

because of $E_{\rm vr} \propto \sqrt{p_{\rm vr}}$, largest possible vortex is has minimal critical velocity

for capillary with diameter d

$$v_{\mathrm{c,vr}} = \frac{\hbar}{m_4 d} \left[\ln \left(\frac{4d}{a_0} \right) - \frac{1}{4} \right] \propto \frac{1}{d}$$

qualitative agreement with flow experiments in capillaries

flow experiments to determine the critical velocity

how does the critical velocity depend on d?

▶ potted is: v_c d vs d
▶ critical velocity v_c ∝ d^{-1/4}
▶ expected v_c ∝ d⁻¹
▶ reason is unknown

Properties near T_c are determined by quantities that go to zero like the order parameter and quantities that diverge like susceptibilities

Landau theory of continuous phase transitions (1937, 1965)

SS 2022

MVCMP-1

- \blacktriangleright idea: expansion of free energy in T in terms of the order parameter
- near $T_{\rm c}$ one should find the following laws with the reduced temperature $t=(T-T_{\rm c})/T_{\rm c}$

2.7 Critical Behaviour of He-II at T_{λ}

Quantity	Power Law	Critical Exponent
specific heat	$C_V \propto t ^{lpha}$	lpha=0
order parameter	$\Phi \propto t ^{eta}$	eta=1/2
susceptibility	$\chi \propto t ^{-\gamma}$	$\gamma = 1$
correlation length	$\xi \propto t ^{- u}$	u = 1/2

Landau type theories: - van der Waals theory for liquid - gas transition

- Curie-Weiss theory of ferromagnetism

- Ginzburg-Landau theory of superconductivity

Problem: fluctuations are not included, but they are increasingly important towards T_c every Landau-type theory breaks down near T_c

Ginzburg criterion

SS 2022

MVCMP-1

The condition under which a Landau-type theory holds is that fluctuations of the order parameter are small in comparison of the mean value of the order parameter

for He-II: coherence length is very small ---- Ginzburg criterion is "always" violated

Renormalization group

Despite of the short-comings of the Landau universal theory of phase transitions, it was realized that it is possible to assign different physical systems to universality classes, characterized by a set of critical exponents

The larger framework is: renormalization group and quantum field theory

different classes are defined by:

dimension of system d, degrees of freedom of order parameter n, interaction length compared to coherence length

Kenneth G. Wilson

SS 2022 MVCMP-1

1

a few examples:

d = 3 *n* = 1

in this universality class liquid-solid transition fall as well

Heisenberg 2 D ↓ ↑ ↓ ↑ ↓ ↑ ↓ *d* = 2 *n* = 3

> at each lattice point each spin can point in 3 direction

x-y 3 D He-II superconductors d = 3 n = 2

magnitude and phase of wave function

each universality class is described by a set of critical exponents and are connected by sum rules like $\alpha + 2\beta + \gamma = 2$

UNIVERSALITY CLASS		THEORETICAL MODEL	PHYSICAL SYSTEM	ORDER PARAMETER
d = 2	<i>n</i> = 1	lsing model in two dimensions	Adsorbed films	Surface density
	<i>n</i> = 2	XY model in two dimensions	Helium-4 films	Amplitude of superfluid phase
	<i>n</i> = 3	Heisenberg model in two dimensions		Magnetization
d > 2	$n = \infty$	"Spherical" model	None	
$d = 3 \qquad n = 0$ $n = 1$ $n = 2$ $\eta_{j} = 3$	<i>n</i> = 0	Self-avoiding random walk	Conformation of long- chain polymers	Density of chain ends
	Ising model in three dimensions	Uniaxial ferromagnet	Magnetization	
			Fluid near a critical point	Density difference between phases
			Mixture of liquids near consolute point	Concentration difference
		Alloy near order- disorder transition	Concentration difference	
	XY model in three dimensions	Planar ferromagnet	Magnetization	
		Helium 4 near super- fluid transition	Amplitude of superfluid phase	
	nj = 3	Heisenberg model in three dimensions	Isotropic ferromagnet	Magnetization
d ≤ 4 n = n =	n = -2		None	
	n = 32	Quantum chromo- dynamics	Quarks bound in protons, neutrons, etc.	

SS 2022

MVCMP-1

critical exponents expected for X-Y 3D model:

 $\alpha = -0.0146(8)$ $\beta = 0.3485(2)$ $\gamma = 1.3177(5)$

SS 2022

MVCMP-1

 $\delta = 4.780(2)$ $\nu = 0.67155(27)$ \leftarrow $\eta = 0.0380(4)$

Experiments near T_{λ} a) specific heat

scale going from K to μ K

power law in the vicinity of T_{λ} ?

data plotted a C_V vs $\log t = \log |T/T_\lambda - 1|$ data can be approximated by $C_V \propto \log t$

logarithmic divergences?

comparison with RGT

expected scaling for He-II

$$C = B + A \frac{t^{-\alpha}}{\alpha} \left(1 - D \sqrt{t} \right)$$

A, B and D are constants

with critical exponent expected $\alpha = -0.146(8)$

expansion in lpha $t^{-lpha} = \mathrm{e}^{-lpha \ln t} pprox 1 - lpha \ln t$

expansion justified because of small α

experimental result $\alpha \approx -0.013 \pm 0.003$

Higher precision experiments near T_{λ} are needed

measurement on earth

SS 2022

MVCMP-1

Problems:

- gravitation level height dependence
- walls of vessel \longrightarrow first layer solid and healing length diverges with diverges near T_{λ} with $\xi = \xi_0 t^{-\nu}$ with $\nu = 0.67155(27)$

measurement on space shuttle

Problems:

Data shown, after sophisticated analysis

still somewhat noisy

SS 2022

MVCMP-1

comparison between space shuttle data and different calculations of α

discrepancy between data and theory outside error bars: reason unknown

b) Order parameter

SS 2022

MVCMP-1

 $\psi(\mathbf{r}) = \psi_0 e^{i\varphi(\mathbf{r})} \longrightarrow \Psi_0 = \sqrt{\varrho_s}$

expected:

 $arrho_{
m s}=t^{2eta}$ with eta=0.3485(2)

determined with second sound $arrho_{
m s} = t^{0.67}$

excellent agreement

c) Healing length

SS 2022

MVCMP-1

again, second sound measurements and measurements on thin films

expected:

$$\xi = \xi_0 t^{-\nu}$$
 with $\nu = 0.67155(27)$

second sound vanishes for $\xi > d$

Helmholtz resonator