

Normalfluid component:

SS 2022

MVCMP-1

$$\rho_{\rm n,r} = \frac{2 p_0^4}{3 \hbar^3} \sqrt{\frac{m^*}{(2\pi)^3 k_{\rm B} T}} e^{-\Delta_{\rm r}/k_{\rm B} T}$$
Rotons

 $\varrho_{\rm n} = \varrho_{\rm n,ph} + \varrho_{\rm n,r}$

$$\sum \varrho_{\rm n,ph} = \frac{2\pi^2 k_{\rm B}^4}{45\,\hbar^3\,v_1^5}\,T^4$$

- ▶ at low temperatures $\rho_{\rm n} \propto T^4$ due to phonons
- rotons dominate between 0.5 K and 1.2 K
- above 1.2 K nature of excitations more complex

2.6 Excitation Spectrum of He-II: Landau Model

Specific heat:

SS 2022

MVCMP-1

a) low temperatures T < 0.6 K

only long wavelength phonons contribute

→ Debye model

$$C_{\rm ph} = \frac{2\pi^2 k_{\rm B}^4}{15 \varrho \hbar^3 v_1^3} \ T^3$$

measurement of thermal conductivity

Casimir regime $\ell = d$ capillary cross section

$$\longrightarrow \Lambda = \frac{1}{3} C_{\rm ph} v \, d \propto T^3$$

2.6 Excitation Spectrum of He-II: Landau Model MVCMP-1

b) intermediate temperatures $0.6 < T < 1.2 \,\mathrm{K}$

SS 2022

free energy
$$F_{\rm r} = -k_{\rm B}Tn_{\rm r}$$

 $S_{\rm r} = -\partial F_{\rm r}/\partial T$
 \downarrow
 $C_{\rm r} = T\partial S_{\rm r}/\partial T$
 $n_{\rm r} = \frac{2p_0^2}{3\varrho\hbar^3}\sqrt{\frac{m^*k_{\rm B}T}{(2\pi)^3}} e^{-\Delta_{\rm r}/k_{\rm B}T}$
number density of rotons

$$C_{\rm r} = \frac{2k_{\rm B}p_0^2}{3\rho\hbar^3} \sqrt{\frac{m^*k_{\rm B}T}{(2\pi)^3}} \left\{ \frac{3}{4} + \frac{\Delta_{\rm r}}{k_{\rm B}T} + \left(\frac{\Delta_{\rm r}}{k_{\rm B}T}\right)^2 \right\} \, \mathrm{e}^{-\Delta_{\rm r}/k_{\rm B}T}$$

c) high temperatures $1.2 \, {
m K} < T < T_{\lambda}$

additional excitations contribute: maxons lifetime of rotons becomes very short

excitations are not well-defined

Landau's concept of critical velocity

superconductors ---- energy gap

SS 2022

superfluid He-II ----- no energy gap, but velocity gap!

Landau's Gedankenexperiment: dropping a massive sphere in He-II at T = 0

let's assume that sphere generates one excitation with energy \mathcal{E} and momentum p

> How fast must this sphere fall in He-II to generate dissipation ?

> > (2)

energy conservation

$$\frac{1}{2}\mathcal{M}v^2 = \frac{1}{2}\mathcal{M}v'^2 + \mathcal{E}$$
 (1)

momentum conservation $\mathcal{M} \boldsymbol{v} - \boldsymbol{p} = \mathcal{M} \boldsymbol{v}'$

not all combinations of \mathcal{E} and p fulfill both conservation law's at the same time, even if the direction of the excitation is not fixed

phonons can be excited at arbitrary small energies

2.6 Excitation Spectrum of He-II: Landau Model

▶ for $v \ge v_c$ sudden onset of dissipation, laminar \longrightarrow turbulent flow

SS 2022

MVCMP-1

1

Testbed for the generation of excitations and the critical velocity

type of ions:

- ▶ electrons (–) : zero-point motion \rightarrow bubbles r = 19 Å
- ▶ ⁴He⁺, H₂⁺ (+) : attract He atoms \rightarrow snowballs $r \approx 7$ Å
- other ions (-, +) : properties depend on wave function

Electrons in liquid He

electrons need energy to be emerged in helium $\sim 1 \text{ eV}$, which means they need more that 1 eV of kinetic energy to enter liquid He.

comment:

similar to work function of electrons in metals

2.7 Motion of lons in He-II

Energy of bubble

SS 2022

MVCMP-1

bubble size:

 $\frac{\partial E}{\partial r} = 0 \longrightarrow r_{\min}(p=0) = 19 \text{ Å}$

size depends on pressure

exploding bubbles at negative pressure

Acceleration of ions in constant field

0.7 K < T < 1.8 K: rotons should dominate however, difficult to observe because of other excitations / impurities

in ultra-pure He-II under pressure ions can be accelerated up to Landau velocity

- negative ions accelerated in electric field under high pressure
- drag is measured by time-of-flight method
- in He-I: drag proportional to velocity
- ▶ in He-II: drag is not observable until critical velocity is reached

pressure dependence of $v_{
m c}$

T < 0.3 K

