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2.4 Bose-Einstein Condensation 

What is the value of the condensation temperature?

He  
gas                       , but boiling point is at    

liquid                      , works well in comparison to 
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Tc =
2π!2

kBm

(
N

2.6V

)2/3

. (2.64)

Using this result we can write the ratio of the number of excited particles to
the total number of particles as

Ne

N
=

(
T

Tc

)3/2

. (2.65)

In the language of the two-fluid model the condensate N0 corresponds to the
superfluid component and Ne to the normal-fluid component (see Fig. 2.29).
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Fig. 2.29. Normalized population of
the ground state N0/N and the excited
states Ne/N as a function of the reduced
temperature T/Tc

The condensation of an ordinary gas in real space corresponds to the
Bose–Einstein condensation of 4He in momentum space, which means that all
atoms have the same wave vector and therefore perform a strictly correlated
motion. Because of this, Bose–Einstein condensation can be considered as
a disorder-to-order transition. A schematic illustration of the results for an
ideal Bose gas is shown in Fig. 2.30. At T = 0 (left), all particles are in the
ground state. For 0 < T < Tc (right), some particles are excited, but the
ground state is still heavily – macroscopically – occupied.

2.3.2 Helium

We now turn to the question of whether (2.64) predicts the condensation
temperature Tc for helium correctly. Using the number density for 4He gas at
saturated vapor pressure at 4.2 K we obtain Tc ≈ 0.5 K. This temperature ob-
viously lies below the temperature of liquefaction and therefore Bose–Einstein
condensation in the gas phase is impossible under equilibrium conditions.4

4 Note that Bose–Einstein condensation of low-density supercooled helium gas has
been achieved recently [75].

the condensation of a normal gas in real space
corresponds to the Bose-Einstein condensation in 
momentum space, which means all atoms have the 
same wave vector and are strongly correlated.

Bose Einstein condensate of atomic gas
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b) Interacting Bose “gas”  (He)

specific heat
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Fig. 2.30. Graphic illustration of the population of the energy levels of an ideal
Bose gas. (a) T = 0, and (b) 0 < T < Tc

Using the parameters for liquid helium one finds a condensation tempera-
ture of Tc = 3.1 K. Considering the simplifications under which (2.64) has
been derived, this value is in reasonably good agreement with the measured
temperature Tλ = 2.17 K of the lambda transition.

More distinct differences, however, are visible in the temperature depen-
dence of the specific heat CV . For an ideal Bose gas a much weaker tempera-
ture dependence is expected than experimentally observed for liquid helium.
This can be seen in Fig. 2.31 where the specific heat of an ideal Bose gas with
the parameters of liquid helium is plotted in comparison with the measured
values.

At low temperatures, the rise of CV should be proportional to T 3/2 for
an ideal Bose gas, whereas a T 3 dependence has been found experimentally
for T < 0.6K (see Sect. 2.5.2). The reason for this discrepancy – and others
of this kind – lies, of course, in the fact that liquid helium is by no means a
noninteracting Bose gas. The interaction between the helium atoms has two
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Fig. 2.31. Specific heat of 4He
(points) after [74] in comparison
with the theoretical curve for an
ideal Bose gas with the para-
meters of liquid helium (dashed
line)
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Fig. 2.30. Graphic illustration of the population of the energy levels of an ideal
Bose gas. (a) T = 0, and (b) 0 < T < Tc

Using the parameters for liquid helium one finds a condensation tempera-
ture of Tc = 3.1 K. Considering the simplifications under which (2.64) has
been derived, this value is in reasonably good agreement with the measured
temperature Tλ = 2.17 K of the lambda transition.

More distinct differences, however, are visible in the temperature depen-
dence of the specific heat CV . For an ideal Bose gas a much weaker tempera-
ture dependence is expected than experimentally observed for liquid helium.
This can be seen in Fig. 2.31 where the specific heat of an ideal Bose gas with
the parameters of liquid helium is plotted in comparison with the measured
values.

At low temperatures, the rise of CV should be proportional to T 3/2 for
an ideal Bose gas, whereas a T 3 dependence has been found experimentally
for T < 0.6K (see Sect. 2.5.2). The reason for this discrepancy – and others
of this kind – lies, of course, in the fact that liquid helium is by no means a
noninteracting Bose gas. The interaction between the helium atoms has two
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interacting Bose gas 

T = 0 ,  N0 < N :

T ≠ 0 ,  N0 < N :

significant number of atoms are not in the ground state

in addition, collective excitations, nature of excitations changes
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Fig. 2.32. Schematic illustration of the population of the superfluid and normal-
fluid component in helium II. (a) At T = 0, all helium atoms belong to the su-
perfluid component. Due to interaction, however, some atoms are scattered into
virtual states with E > 0. (b) At finite temperatures, thermal excitations also oc-
cur, which are identical to longitudinal phonons at very low temperatures. As we
shall see later, these thermal excitations form the normal-fluid component

important consequences that are schematically shown in Fig. 2.32. First, the
ground-state population is somewhat reduced, or in other words, the conden-
sate concentration is lower than one would expect for an ideal Bose gas. One
often refers to this as a depletion of the ground state. Secondly, the nature of
excitations is different for interacting Bose particles. Instead of individually
excited atoms, collective excitations occur that have already been investi-
gated theoretically in 1947 by Bogoliubov [76]. Despite these differences, the
crucial feature of Bose–Einstein condensation in a system of interacting Bose
particles is still the fact that a macroscopic number of particles remains in
the ground state even at relatively high temperatures, just as in the case of
an ideal Bose gas.

2.3.3 Condensate Fraction in Helium II

Although there is no direct way to determine the condensate concentration
experimentally it is possible to draw indirectly conclusions about this quan-
tity from different experiments (Fig. 2.33). With some theoretical effort it
can be shown that the surface tension is a measure of the condensate con-
centration. More obvious is the connection between the condensate concen-
tration and the average energy per atom, which can be measured in neutron-
scattering experiments. In measurements at large momentum transfer Q, the
dynamic structure factor S(Q,ω) directly reflects the momentum distribution
of the atoms from which the condensate density can be derived.

Also, from the pair-correlation function determined in X-ray scattering
experiments one can draw conclusions about the condensate concentration.
The basic idea is that the condensation in momentum space should lead
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Experimental determination of the condensate

2.4 Bose-Einstein Condensation 

there is no direct way to measure the condensate fraction:  

a) neutron scattering: measuring the dynamic structure factor
via inelastic neutron scattering

momentum distribution

b) X-ray scattering:  pair correlation function at transition to superfluid state 
becomes broader because of the condensation in momentum space

above

c) surface tension:       complicated but possible  
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to broadening of the distribution in real space according to the uncertainty
principle. This broadening should be proportional to the number of atoms
in the condensate. Therefore, the pair-correlation function below Tλ can be
written as

g(r) − 1 = (1 − n0)2 [g∗(r) − 1] , (2.66)

where n0 denotes the condensate density and g∗(r) the pair-correlation func-
tion of the noncondensate atoms which, in practice, can be taken as being g(r)
at a temperature just above Tλ.

As can be seen in Fig. 2.33, the values obtained with different experimental
methods agree well. It is remarkable that even for T → 0 the condensate
concentration is only about 13%. This means that directly equating !s with
the condensate is not possible. The theoretical values for the condensate
fraction lie between 0.09 and 0.12 and are in reasonably good agreement
with experimental data.
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Fig. 2.33. Condensate concen-
tration in helium II as a function
of temperature. The experimen-
tal data are from X-ray scatter-
ing [77], neutron scattering [78–
80] and measurements of the sur-
face tension (dashed curve) [81].
The solid line represents an em-
pirical fit of the data

At the end of this section we note that in recent years Bose–Einstein
condensation in dilute gases has been achieved in sophisticated experiments
by several groups. The techniques of laser cooling, magnetic trapping and
rf evaporative cooling are essential ingredients that have been combined to
obtain Bose–Einstein condensation in dilute gases. Meanwhile, not only have
such Bose condensates been realized, but many properties, such as sound
propagation, have been studied in these systems. Besides the many similar-
ities between the physics of helium II and Bose condensates of dilute gases,
these experiments are not considered to belong to traditional low-temperature
physics, because of the very different experimental methods involved. We will
therefore not discuss them here, but refer to recent reviews about this fasci-
nating subject [82–84].

condensate fraction for                just 13 %

is not equal with condensate fraction
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2.5 Macroscopic Quantum State

quantization of circulation

Josephson effects

wave function of superfluid component

(∗)
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2.4 Macroscopic Quantum State

F. London repeatedly stressed in different publications that the condensate
is a quantum state on a macroscopic scale [11]. Later, this viewpoint was
extended to the whole superfluid component since it is assumed that the con-
densate and the superfluid component are closely related. As we will see, the
presence of a macroscopic quantum state has consequences for the properties
of helium II. For example, it results in a quantization of circulation and it
enables phenomena analogous to the Josephson effect in superconductors.

2.4.1 Wave Function of the Superfluid Component

The macroscopic quantum state present in helium II can be described by the
wave function

ψ(r) = ψ0 eiϕ(r) , (2.67)

where the phase ϕ(r) is a real-valued function of the position. The ampli-
tude ψ0 is constant or, under certain conditions, just slightly position de-
pendent. Henceforth, we shall omit the position dependence. The absolute
value of the wave function is given by the number of atoms in the superfluid
component per unit volume and can be expressed by

ψ"ψ = |ψ0|2 =
#s

m4
. (2.68)

Here, m4 denotes the mass of 4He atoms. The phase of the macroscopic wave
is related to the velocity of atoms. The momentum p of a helium atom in the
superfluid component can be described with the Schrödinger equation

−i!∇ψ = p ψ . (2.69)

Using (2.67) we find p = !∇ϕ(r) = m4vs and thus

vs =
!
m4

∇ϕ(r) . (2.70)

The velocity of the superfluid component therefore determines the phase
shift of the wave function. The phase is constant for vs = 0, and changes
uniformly for vs = const. The phase of the wave function is a well-defined
quantity within the entire liquid. We can think of particles being ‘rigidly’
connected, though it should be emphasized that this rigid coupling takes
place in momentum space and not in real space. This concept can be verified
by investigating helium II under rotation. Corresponding experiments will be
discussed in the following section.

with 

mass of a 4He atom
Schrödinger equation

with (∗)
only valid at sufficiently 
low velocity were
is constant

comment:

determines the phase shift of wave function
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const. phase is changes uniformly

Interpretation

► phase is well-defined in entire liquid
► macroscopic wave function
► “rigid” coupling in momentum space
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Proof of the concept: He-II under rotations

measurement of liquid meniscus

classical fluid  ≙ normalfluid component  

solid body rotation
distance from 
axis of rotation

profile of liquid surface             parabola

what about the superfluid component ?

two-fluid model !

= 0
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► should not rotate (should be at rest)
► if so, centrifugal force is reduced
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Experimental results

54 2 Superfluid 4He – Helium II
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Fig. 2.34. Surface curvature γ of he-
lium II under rotation as a function of
angular velocity [89]. The solid line
represents the expected behavior of
a classical liquid γ = ω2/g, and the
dashed line indicates the prediction
for the case that the superfluid com-
ponent is at rest, i.e., γ = (#n/#)ω2/g

κ =
∮

L

vs · dl =
∫

A

curlvs · df . (2.73)

The use of vs = !∇ϕ(r)/m4 from (2.70) results in

κ =
!

m4
∆ϕL , (2.74)

where ∆ϕL denotes the phase difference along the integration path L within
the ring. Since the wave function is a unique function, the phase can only differ
by integer multiples of 2π, i.e., ∆ϕ = 2π n, for a complete cycle. Therefore,
we have

κ =
h

m4
n with n = 0, 1, 2, 3, . . . . (2.75)

An experimental proof of this quantization was first obtained by Vinen
in 1961 [87]. In his experiments, a thin wire (diameter 25µm, length 5 cm)
was placed in the center of a cylindrical vessel filled with helium II. A char-
acteristic transverse vibration of the wire was excited in a constant magnetic
field by passing an alternating current through the wire. Without rotation
of the surrounding helium, the transverse vibration of the wire can be de-
scribed by two degenerate oscillations circularly polarized in opposite senses.
Under rotation, the degeneracy is lifted by the Magnus force. The frequency
difference ∆ν that is now observed, is given by

∆ν =
%s

2πM κ , (2.76)

where M represents the effective mass per length of the wire plus half of the
mass of the liquid displaced.

The data shown in Fig. 2.35 are not from the original experiment, but from
a more recent investigation similar to that of Vinen. Clearly, quantized values
of the circulation are observed. Starting from zero, the rotational velocity
was increased slowly, then reduced again and subsequently the direction of

surface curvature:                                     all liquid

only normalfluid

curvature for all liquid is observed
in Osborn experiment 

Why is this the case?

let's do a thought experiment with an annular-shaped container

circulation:
multiply-connected region
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for the case that the superfluid com-
ponent is at rest, i.e., γ = (#n/#)ω2/g

κ =
∮

L

vs · dl =
∫

A

curlvs · df . (2.73)

The use of vs = !∇ϕ(r)/m4 from (2.70) results in

κ =
!

m4
∆ϕL , (2.74)

where ∆ϕL denotes the phase difference along the integration path L within
the ring. Since the wave function is a unique function, the phase can only differ
by integer multiples of 2π, i.e., ∆ϕ = 2π n, for a complete cycle. Therefore,
we have

κ =
h

m4
n with n = 0, 1, 2, 3, . . . . (2.75)

An experimental proof of this quantization was first obtained by Vinen
in 1961 [87]. In his experiments, a thin wire (diameter 25µm, length 5 cm)
was placed in the center of a cylindrical vessel filled with helium II. A char-
acteristic transverse vibration of the wire was excited in a constant magnetic
field by passing an alternating current through the wire. Without rotation
of the surrounding helium, the transverse vibration of the wire can be de-
scribed by two degenerate oscillations circularly polarized in opposite senses.
Under rotation, the degeneracy is lifted by the Magnus force. The frequency
difference ∆ν that is now observed, is given by

∆ν =
%s

2πM κ , (2.76)

where M represents the effective mass per length of the wire plus half of the
mass of the liquid displaced.

The data shown in Fig. 2.35 are not from the original experiment, but from
a more recent investigation similar to that of Vinen. Clearly, quantized values
of the circulation are observed. Starting from zero, the rotational velocity
was increased slowly, then reduced again and subsequently the direction of

phase can only be changed by            for full cycle 
circulation is quantized !

T = 1.1 K


