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2.3 Properties of He-II described using 
the two-fluid model

Momentum of heat flow

Heat flow in He-II              momentum flow

resulting pressure acting on a heat source

(∗)

with heat flow / per area

no net mass transport (closed vessel) 

insert in (∗)

pressure associated with 
uni-directional heat flow

momentum flow / volume 
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2.3 Properties of He-II described using 
the two-fluid model

Momentum of heat flow: Measurement

change of distance between 
glass plate and lens measured 
by Newton rings           force

geometry dependent factor
of the order of one

heat flow
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ͻ heater generates normal fluid: phonons and rotons
ͻ radiation to the left
ͻ recoil to the right
ͻ measurement of displacement of the glas plate via EĞǁƚŽŶ͚Ɛ rings between

glas plate and lens

heater

glas plate EĞǁƚŽŶ͚Ɛ�ƌŝŶŐƐ

lens 
(fixed position)

recoil

wire support

4He

I.3.2 Two-Fluid Model 
± momentum transfer due to heat flow

ͻ momentum flow per volume:
given by U v ͼ�ǀ

ͻ resulting pressure on heat source:

ͻ with heat flow per area:

ͻ we obtain with
(no mass transport) pressure
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ͻ heater generates normal fluid: phonons and rotons
ͻ radiation to the left
ͻ recoil to the right
ͻ measurement of displacement of the glas plate via EĞǁƚŽŶ͚Ɛ rings between

glas plate and lens

heater

glas plate EĞǁƚŽŶ͚Ɛ�ƌŝŶŐƐ

lens 
(fixed position)

recoil

wire support

4He

I.3.2 Two-Fluid Model 
± momentum transfer due to heat flow

ͻ momentum flow per volume:
given by U v ͼ�ǀ

ͻ resulting pressure on heat source:

ͻ with heat flow per area:

ͻ we obtain with
(no mass transport) pressure

Newton rings Expected force
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2.3 Properties of He-II described using 
the two-fluid model

Momentum of heat flow: results plotted as

Pyotr Leonidovich Kapitsa (1894 – 1984)

► results are independent of geometry
► because of                                                   rise at low and high T
► line: two-fluid model (without free parameter)
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Fig. 2.19. Normalized force
acting on a glass slide caused by
a unidirectional heat flux in he-
lium II as a function of temper-
ature. The solid line represents
a theoretical calculation accord-
ing to the two-fluid model [61]

2.2.8 Sound Propagation

In this section, we use the hydrodynamic equations to discuss the propagation
of sound in helium II. First, we differentiate (2.4) with respect to time and
insert the result into (2.5). One obtains

∂2"

∂t2
= ∇2p . (2.26)

In the next step we eliminate all terms containing vs and vn in (2.6) and
(2.9), since these quantities cannot be observed experimentally. After some
simple algebra, and disregarding terms of higher order, one finally obtains

∂2S

∂t2
=

"s S2

"n
∇2T . (2.27)

Using these two equations the sound propagation in helium II can thoroughly
be discussed in the framework of the approximations made above. We have
in total four variables (", S, p and T ), only two of which are independent.
In the following, we chose the density " and the entropy S as independent
quantities and express their variation with pressure and temperature by

δp =
(

∂p

∂"

)

S

δ" +
(

∂p

∂S

)

!

δS , (2.28)

δT =
(

∂T

∂"

)

S

δ" +
(

∂T

∂S

)

!

δS . (2.29)

Insertion of these two expressions into (2.26) and (2.27) leads to:

∂2"

∂t2
=

(
∂p

∂"

)

S

∇2" +
(

∂p

∂S

)

!

∇2S , (2.30)
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Two-Fluid Hydrodynamics

mass flow

(1)

(2)

(3)

density

mass conservation
continuity eqn.

(4)ideal fluid

(5)entropy conservation

(6)an equation of motion for
superfluid component



SS 2022
MVCMP-1

77

2.3 Properties of He-II described using 
the two-fluid model

d) Sound propagation (precision test of two-fluid model)

differentiation of (3) in respect to time and insert in (4)

eliminate         and          in (5) and (6) with (2)

since not observable

neglect terms of 2nd order

(∗)

(∗ ∗)

with (∗)  and (∗ ∗)  one can fully describe the sound propagation in He-II
(under the assumption we made)
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2.3 Properties of He-II described using 
the two-fluid model

we have 2 equations, but 4 variables                           however, only 2 independent variables

We choose as independent and express           with     and     (for small changes)

insert in (∗)  and (∗ ∗)

2 partial differential equations of 2nd order
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2.3 Properties of He-II described using 
the two-fluid model

Ansatz:

frequency of wave
velocity in x direction

Insertion and differentiation leads to 2 linear equations in       and  

with

(i)

(ii)

and
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2.3 Properties of He-II described using 
the two-fluid model

the constrains equation for the coefficients is

here standard thermodynamic 
relations are used

for liquid helium 

interpretation:  two wave                      weakly coupled via 

(iii)
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2.3 Properties of He-II described using 
the two-fluid model

(i) First sound

with (i) and (iii) 

as usual for ordinary (first) sound
insert (4) into (6) 

superfluid and normalfluid
component are in phase
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2.3 Properties of He-II described using 
the two-fluid model

(i) First sound

2.2 Two-Fluid Model 37

First Sound

The propagation of first sound with velocity v1 is given by (2.34) in the case
where !′ != 0 and S′ = 0. Under these conditions the temperature gradient
vanishes, i.e. gradT ≈ 0, just as it does for an ordinary sound wave. We can
use this approximation together with (2.5) and (2.9) to obtain the important
relation

!n
∂

∂t
(vn − vs) = !S gradT = 0 . (2.40)

Therefore, we finally get

vn = vs . (2.41)

From this we can conclude that the two components of helium II move in
phase, resulting in an adiabatic density variation. In this case, helium II be-
haves like an ordinary liquid in which sound waves propagate with velocity
v = v1. For the low-temperature limit T → 0, we find v1 ≈ 238 m s−1. This
result is strictly valid only if the two types of waves are completely decoupled.
The actual corrections are important only near the lambda point.

The temperature dependence of the velocity of first sound in liquid helium
is shown in Fig. 2.20. The data points are from measurements at 1 MHz and
14 MHz. The velocity of first sound increases from about 180 m s−1 at the
boiling point of helium to 238 m s−1 at low temperatures. As expected, an
anomaly in the elastic properties of liquid helium is visible in the vicinity of
the lambda transition.

0 1 2 3 4
Temperature T / K

180

200

220

240

v 1
/m

s−1

He II

Fig. 2.20. Velocity of first sound in
liquid helium as a function of tem-
perature [62,63]

Second Sound

In the case where S′ != 0 and !′ = 0, we find temperature waves described
by (2.35), which propagate with the velocity v = v2. From (2.26) it follows
that grad p = 0, and together with the Euler equation (2.5) we obtain

► for               :

► for               :  corrections become important  

2.2 Two-Fluid Model 37

First Sound

The propagation of first sound with velocity v1 is given by (2.34) in the case
where !′ != 0 and S′ = 0. Under these conditions the temperature gradient
vanishes, i.e. gradT ≈ 0, just as it does for an ordinary sound wave. We can
use this approximation together with (2.5) and (2.9) to obtain the important
relation

!n
∂

∂t
(vn − vs) = !S gradT = 0 . (2.40)

Therefore, we finally get

vn = vs . (2.41)

From this we can conclude that the two components of helium II move in
phase, resulting in an adiabatic density variation. In this case, helium II be-
haves like an ordinary liquid in which sound waves propagate with velocity
v = v1. For the low-temperature limit T → 0, we find v1 ≈ 238 m s−1. This
result is strictly valid only if the two types of waves are completely decoupled.
The actual corrections are important only near the lambda point.

The temperature dependence of the velocity of first sound in liquid helium
is shown in Fig. 2.20. The data points are from measurements at 1 MHz and
14 MHz. The velocity of first sound increases from about 180 m s−1 at the
boiling point of helium to 238 m s−1 at low temperatures. As expected, an
anomaly in the elastic properties of liquid helium is visible in the vicinity of
the lambda transition.
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Fig. 2.20. Velocity of first sound in
liquid helium as a function of tem-
perature [62,63]

Second Sound

In the case where S′ != 0 and !′ = 0, we find temperature waves described
by (2.35), which propagate with the velocity v = v2. From (2.26) it follows
that grad p = 0, and together with the Euler equation (2.5) we obtain

only density variation almost ordinary sound 
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2.3 Properties of He-II described using 
the two-fluid model

(ii) Second sound

with (ii) and (iii) we find

with (4) 

!

no mass flow in closed vessel

counter flow and no density variation

,

,

temperature wave
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2.3 Properties of He-II described using 
the two-fluid model

density variation in phonon gas
possibility to 
determine 

38 2 Superfluid 4He – Helium II

∂ ("nvn)
∂t

+
∂ ("svs)

∂t
= 0 , (2.42)

which means that the momentum density j = "nvn + "svs is either constant
or zero. Since no constant mass flow can occur in a closed container, it follows
that "nvn + "svs = 0. This means that the motion of the two components
takes place in phase opposition. The velocity of the temperature waves that
propagate through helium II is given by

v2 =

√
"s

"n
S2

(
∂T

∂S

)

!

=

√
"s

"n

T S2

Cp
. (2.43)

As we will see, according to the Landau model of helium II, the only ex-
citations at very low temperatures are phonons. In the framework of this de-
scription we expect for the velocity of second sound v2 → v1/

√
3 ≈ 137 m s−1

for T → 0. This limiting value is obtained by insertion of "s ≈ ", S = AT 3,
Cp = 3AT 3 and "n = A"T 4/v2

1 , with A = 2π2k4
B/(45!3v3

1"). Here, we have
used in advance the expressions (2.87) and (2.89) for Cp and "n, respectively.

The temperature dependence of the sound velocity of second sound is
shown in Fig. 2.21. Over a wide temperature range the experimental data
agrees very well with the calculated curve. Below 0.5 K the generation and
detection of second sound becomes very difficult. Thus, the limiting value for
T → 0 of approximately v1/

√
3 cannot be verified experimentally.
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Fig. 2.21. Velocity of second sound
in helium II as a function of tempera-
ture [53,64]. The solid line shows the
result of a calculation with (2.43) (af-
ter [65])

It is interesting to note that in the first attempts to look for second sound
in helium II it was not attempted to generate directly temperature waves via
periodical heating, but rather one tried to detect the (weak) temperature
wave that accompanies the propagation of ordinary sound in helium II. Such
a temperature variation occurs because the density variation due to the first
sound leads to slight local variations of the ratio "s/"n, which is equivalent
to a temperature change (see (2.37)).

for  Tà 0 second sound difficult
determine since       à 0ultra-low temperatures:

excitations at Tà 0 are only longitudinal phonons
Landau

Debye model

in addition for               :    


