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2.2.2 Viscosity Measurements

In this section, we shall revisit the viscosity measurements, which have al-
ready been presented in Sect. 2.1. Here, we discuss the surprisingly different
results in the context of the two-fluid model.

Flow Through Thin Capillaries Due to viscous damping the normal-fluid
component is almost completely blocked in thin capillaries (vn ≈ 0). Only the
superfluid component is mobile and is observed in such experiments. Since its
motion is frictionless, the measured viscosity is zero below the lambda tran-
sition.

Rotary Viscosimeter A rotary viscosimeter consists of two hollow cylin-
ders of different size, one rotating inside the other. The viscosity of the liquid
between the cylinders is determined via the torque Mr = πηωd2

rd
2
s/(d2

s − d2
r )

transferred from the rotating inner cylinder with diameter dr to the outer
stationary cylinder with diameter ds. Here, ω denotes the angular velocity
of the rotation. Since the viscosity of the superfluid component is zero, it
applies no torque onto the stationary cylinder. Therefore, only the viscosity
of the normal-fluid component Mr ∝ η = ηn is measured in such experiments,
which is nonzero even below Tλ.

The temperature dependence of ηn is mainly given by the mean free
path $n of the thermal excitations in helium. The increase of the mean free
path with decreasing temperature below about 1.8 K can be explained ac-
cording to the theory of Landau and Khalatnikov , by the reduction of the
scattering of thermal excitations. In their model, they assumed a dilute gas of
excitations. This assumption is not valid above 1.8 K and therefore the tem-
perature dependence of the normal-fluid viscosity in this temperature range
cannot be explained with this theory.

Oscillating-Disc Viscosimeter The viscosity measurements made with
this technique are based on the torque Md = π

√
%η ω3/2r4 Θ(ω) acting on an

oscillating disc with radius r in the liquid. Here, Θ(ω) = Θ0 cos(ωt − π/4)
denotes the angle of deflection and ω the angular frequency of the oscillation.
The crucial point is that, in this experiment, it is not just the viscosity that
is measured, but the product % η of density and viscosity.

Since the superfluid component does not contribute below Tλ (ηs = 0), the
apparent viscosity is given by %nηn. Therefore, the temperature dependence
shown in Fig. 2.5 is understandable because the density of the normal-fluid
component decreases rapidly below the lambda point. Using the result for ηn

from the measurement with rotary viscosimeters, it is possible to draw conclu-
sions about the temperature dependence of %n. The first direct measurement
of this quantity is discussed in the next section.

50 aluminum discs

thickness 13 µm 
diameter 3.5 cm
spacing 210 µm

torsional fiber
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observation            slow resonant oscillations  (mass and torsion fiber)

Important parameter is the viscos penetration depth 
for wave with frequency 

28 2 Superfluid 4He – Helium II

2.2.3 Determination of !n/!

A schematic drawing of the specially designed torsion oscillator that An-
dronikashvili used in 1948 to determine the normal-fluid density !n is shown
in Fig. 2.12 [55]. The torsion pendulum consisted of 50 equally spaced alu-
minum discs with a diameter of 3.5 cm and a thickness of only 13µm. The
discs were mounted on a rod separated from each other by 210µm. The rod
with the discs was suspended by a torsion fiber forming an oscillator. The
lower part of the oscillator was immersed in liquid helium. In the actual ex-
periment, slow oscillations with a typical period of 30 s were excited and the
resulting deflection amplitude was detected optically via a mirror that was
rigidly attached to the axis of the pendulum.

Window

Mirror

Liquid Helium

Al−discs

To pump

Fig. 2.12. Schematic drawing of the appara-
tus used by Andronikashvili to determine the
normal-fluid density !n of helium II

The total mass of the pendulum bob determines its moment of inertia.
The oscillator was driven at the resonant frequency of its torsional mode. This
frequency depends on the ratio of the torsion constant and the moment of
inertia of the pendulum. The discs of the viscosimeter were constructed from
very light material to achieve as large a change as possible in the moment of
inertia for a given change of the entrained mass. The spacing d between the
discs and the period of oscillation were chosen so that the viscous penetration
depth δ =

√
2ηn/!nω was larger than the distance between the aluminum

discs throughout the entire experiment. Therefore, the complete normal-fluid
component !n, but not the superfluid component !s, was dragged with the
discs above and below the lambda point.

In this way, the temperature dependence of !n can be measured directly.
The results of the original measurements by Andronikashvili are shown in
Fig. 2.13. Above Tλ, all the fluid is dragged with the discs and the data
reflect the temperature dependence of the density of helium I. Below Tλ,

d < : ► is dragged along with torsion oscillator above and below
► remains stationary
► period of oscillation determined by mass of torsion oscillator (and spring constant) 
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Fig. 2.13. Temperature dependence
of the normal-fluid density !n normal-
ized to the density !λ at Tλ. The
data were obtained with two different
methods: ◦ Andronikashvili viscosime-
ter, and • second-sound measurements
(after [56])

however, the period of oscillation decreases sharply, indicating that the fluid
in the spaces was not completely entrained by the discs. This result confirms
the prediction that the superfluid component has no effect on the torsion
pendulum. The temperature dependence of !n below the lambda point can
be described by the empirical formula

!n = !λ

(
T

Tλ

)5.6

, (2.11)

where !λ denotes the density at the lambda point. For comparison, the
normal-fluid density !n as determined by second-sound measurements is also
shown in Figure 2.13. As can be seen, the results of the two methods are in
very good agreement. In more recent experiments, the ratio !s/! has been
determined over a wider temperature range (see Sect. 2.5).

2.2.4 Beaker Experiments

The explanation of the peculiar behavior of helium II in the beaker experi-
ments is straightforward. The geometrical conditions on which we base our
considerations are shown in Fig. 2.14. A helium film forms on surfaces above
a bath of helium II. The Van der Waals force between helium atoms and the
walls plays a crucial role here. The properties of such helium films can be
discussed in a simple way in terms of the chemical potential µ. For films in
saturated vapor and thermodynamic equilibrium we have

µf = µg = µ" . (2.12)

Here, the indices f, g and " refer to film, gas and liquid.
The fact that the film is located on the beaker walls above the liquid

surface indicates that the influence of gravity is compensated by Van der
Waals forces. Therefore, we can write

µf = µ" +µgrav + µvdW︸ ︷︷ ︸
= 0

= µ" . (2.13)
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where !λ denotes the density at the lambda point. For comparison, the
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Here, the indices f, g and " refer to film, gas and liquid.
The fact that the film is located on the beaker walls above the liquid

surface indicates that the influence of gravity is compensated by Van der
Waals forces. Therefore, we can write
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b) Beaker experiments

films are formed with a thickness of ~ 200 Å in saturated vapor pressure also against gravity

let us understand how
comment: the film formation is a “classical” phenomenon 

(i) Film formation in saturated vapor

In thermal equilibrium

chemical potential for film (gas and liquid)

gravitational force is compensated by v. Waals forces

30 2 Superfluid 4He – Helium II

d

g

z Fig. 2.14. Schematic sketch of a helium film
covering the walls of a beaker. The thickness d
depends on the height z above the liquid mirror
surface

Inserting µgrav = gz and µvdW = −α/d3, we obtain gz − α/d3 = 0 and thus
for the thickness1

d = 3

√
α

gz
. (2.14)

Here, α represents the Hamaker constant , the magnitude of which is deter-
mined by the dielectric properties of the wall and the helium atoms. Essen-
tially, the atomic polarizability enters here. In saturated vapor, we find at
z = 10 cm a typical film thickness of 200 Å. The superfluid properties are
unimportant for the film thickness, but play a crucial role in the film flow.
The superfluid component can flow without friction so as to minimize the
chemical potential in the entire system. An interesting point is the behavior
of the entropy, because the rest of the fluid in the beaker should warm up
proportional to "n/"s if the superfluid component is flowing out. However,
this is not observed in experiments because the surrounding helium gas leads
to thermalization.

Films in an unsaturated vapor can be described in a similar way. Accord-
ing to the kinetic theory of gases, the chemical potential of an unsaturated
vapor is given by the expression

µg(p) = µg(p0) +
kBT

m4
ln

(
p

p0

)
. (2.15)

Here, p0 denotes the saturated-vapor pressure of the liquid, R the univer-
sal gas constant and m4 the mass of a helium atom. As we have seen be-
fore, the chemical potential in saturated vapor is identical with that of the
liquid µg(p0) = µ!. In very thin films, the contribution of gravity to the
chemical potential of the film is negligible. In this case, we obtain from
µg(p) = µf = µ! + µvdW the relation

α

d3
=

kBT

m4
ln

(
p0

p

)
, (2.16)

and thus the film thickness is given by
1 Note that µvdW = −α/d3 is only valid for thin films (d < 30 nm) because in

thicker films the retardation of the Van der Waals forces due to the finite light
velocity has to be taken into account. For very thick films (d > 80 nm) the
chemical potential is better described by µ = −α/d4, resulting in z ∝ d4.
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film thinkness:

atomic polarisability of helium + wall 
(Hamaker constant)

depends on film thickness:                                     for  

30 2 Superfluid 4He – Helium II

d

g

z Fig. 2.14. Schematic sketch of a helium film
covering the walls of a beaker. The thickness d
depends on the height z above the liquid mirror
surface

Inserting µgrav = gz and µvdW = −α/d3, we obtain gz − α/d3 = 0 and thus
for the thickness1

d = 3

√
α

gz
. (2.14)

Here, α represents the Hamaker constant , the magnitude of which is deter-
mined by the dielectric properties of the wall and the helium atoms. Essen-
tially, the atomic polarizability enters here. In saturated vapor, we find at
z = 10 cm a typical film thickness of 200 Å. The superfluid properties are
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retardation of potential

typical value:   d ~ 20 nm  at  z = 10 cm

comment: property of superfluidity is unimportant for the 
film formation and thickness, but for the film flow  
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(ii) film formation in unsaturated vapor

helium film

How does d depend on p ?

barometric formula

► decrease of pressure                decrease of film thickness
► in practice: thinknesses of sub-mono layers are possible and realized

investigation of superfluidity with third sound: onset of superfluidity at n > 2.1 layers
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now back to the film flow:

► films are formed
► is moving without friction
► equalizing the chemical potential is driving force
► const. rate  ≙ critical velocity
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2.2.3 Determination of !n/!

A schematic drawing of the specially designed torsion oscillator that An-
dronikashvili used in 1948 to determine the normal-fluid density !n is shown
in Fig. 2.12 [55]. The torsion pendulum consisted of 50 equally spaced alu-
minum discs with a diameter of 3.5 cm and a thickness of only 13µm. The
discs were mounted on a rod separated from each other by 210µm. The rod
with the discs was suspended by a torsion fiber forming an oscillator. The
lower part of the oscillator was immersed in liquid helium. In the actual ex-
periment, slow oscillations with a typical period of 30 s were excited and the
resulting deflection amplitude was detected optically via a mirror that was
rigidly attached to the axis of the pendulum.
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Fig. 2.12. Schematic drawing of the appara-
tus used by Andronikashvili to determine the
normal-fluid density !n of helium II

The total mass of the pendulum bob determines its moment of inertia.
The oscillator was driven at the resonant frequency of its torsional mode. This
frequency depends on the ratio of the torsion constant and the moment of
inertia of the pendulum. The discs of the viscosimeter were constructed from
very light material to achieve as large a change as possible in the moment of
inertia for a given change of the entrained mass. The spacing d between the
discs and the period of oscillation were chosen so that the viscous penetration
depth δ =

√
2ηn/!nω was larger than the distance between the aluminum

discs throughout the entire experiment. Therefore, the complete normal-fluid
component !n, but not the superfluid component !s, was dragged with the
discs above and below the lambda point.

In this way, the temperature dependence of !n can be measured directly.
The results of the original measurements by Andronikashvili are shown in
Fig. 2.13. Above Tλ, all the fluid is dragged with the discs and the data
reflect the temperature dependence of the density of helium I. Below Tλ,

Interesting question:       flows with S = 0!
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rest should warm up and helium flowing into 
a vessel should have  T = 0!
but thermal equilibrium via gas phase

2.1 Experimental Observations 19
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Fig. 2.4. Level height of a beaker as a
function of time. The level was 13 cm
below the surface of the surrounding
helium bath at the beginning of the
experiment [44]

time, which means that the transfer rate is independent of the level differ-
ence, as in the experiments discussed previously. But surprisingly, at the time
when the level difference has almost vanished, an undamped oscillation of the
helium level in the beaker is observed. In the particular experiment discussed
here, the amplitude of this oscillation was about 0.35 mm. The origin of this
oscillation is an overshoot of the flow because of the inertia of the flowing
helium film every time the levels are equal, leading to a periodic reversal of
the flow. Because of superfluidity the oscillation persists nearly undamped
over several minutes in the experiment discussed here. This does not always
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Fig. 2.5. (a) Schematic illustration of a beaker experiment that allows a detailed
determination of the helium transfer. The inner diameter of the tube was only
0.58 mm. The copper base of the beaker was incorporated to provide good thermal
contact. For clarity, the helium in the beaker is drawn in light grey, although there
is no difference between the inner and outer helium. (b) Time evolution of the
helium height in the beaker [45]
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Two-Fluid Hydrodynamics

mass flow

(1)

(2)

(3)

density

mass conservation
continuity eqn.

(4)ideal fluid

(5)entropy conservation

(6)an equation of motion for
superfluid component
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c) Thermomechanical effect

2.2 Two-Fluid Model 31

d = 3

√
α m4

kBT (ln p0 − ln p)
. (2.17)

This expression corresponds to a Van der Waals adsorption isotherm and
reflects the fact that the thickness of the film can be reduced by lowering the
pressure. Even submonolayers can be produced in this way. In experiments
with very thin films it has been demonstrated that the onset of superfluidity
occurs at about 2.1 monolayers, and that the first layer is solid [57].

A plot of (2.17) is shown in Fig. 2.15. Neglecting gravity, arbitrarily thick
films can, in principle, be produced for pressures p → p0.
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Fig. 2.15. Thickness of helium films as
a function of pressure according to (2.17)

2.2.5 Thermomechanical Effect

The nature of the experiments showing the thermomechanical effect have
been discussed in Sect. 2.1. Two beakers (A and B) filled with helium II
are connected at the bottom via a thin capillary, which acts as a so-called
superleak , which blocks the normal-fluid component and allows the superfluid
component to pass through. Increasing the pressure in A results in a flow of
superfluid component through the superleak to B. Because of this, the ratio
of "s/" in both beakers changes and thus a temperature gradient between A
and B rises. In equilibrium, we can describe the situation by using (2.9)

∂vs

∂t
= S gradT − 1

"
grad p = 0 (2.18)

and obtain
∆p

∆T
= "S . (2.19)
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28 2 Superfluid 4He – Helium II

2.2.3 Determination of !n/!

A schematic drawing of the specially designed torsion oscillator that An-
dronikashvili used in 1948 to determine the normal-fluid density !n is shown
in Fig. 2.12 [55]. The torsion pendulum consisted of 50 equally spaced alu-
minum discs with a diameter of 3.5 cm and a thickness of only 13µm. The
discs were mounted on a rod separated from each other by 210µm. The rod
with the discs was suspended by a torsion fiber forming an oscillator. The
lower part of the oscillator was immersed in liquid helium. In the actual ex-
periment, slow oscillations with a typical period of 30 s were excited and the
resulting deflection amplitude was detected optically via a mirror that was
rigidly attached to the axis of the pendulum.
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Fig. 2.12. Schematic drawing of the appara-
tus used by Andronikashvili to determine the
normal-fluid density !n of helium II

The total mass of the pendulum bob determines its moment of inertia.
The oscillator was driven at the resonant frequency of its torsional mode. This
frequency depends on the ratio of the torsion constant and the moment of
inertia of the pendulum. The discs of the viscosimeter were constructed from
very light material to achieve as large a change as possible in the moment of
inertia for a given change of the entrained mass. The spacing d between the
discs and the period of oscillation were chosen so that the viscous penetration
depth δ =

√
2ηn/!nω was larger than the distance between the aluminum

discs throughout the entire experiment. Therefore, the complete normal-fluid
component !n, but not the superfluid component !s, was dragged with the
discs above and below the lambda point.

In this way, the temperature dependence of !n can be measured directly.
The results of the original measurements by Andronikashvili are shown in
Fig. 2.13. Above Tλ, all the fluid is dragged with the discs and the data
reflect the temperature dependence of the density of helium I. Below Tλ,
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The latter expression was first derived by H. London and thus is often called
the London equation [58]. Figure 2.16 shows experimental values of the tem-
perature difference between the two beakers as a function of the level differ-
ence, which corresponds to a pressure difference.

The data demonstrate nicely the linear relation between ∆p and ∆T pre-
dicted by (2.19). As expected, the thermomechanical effect weakens with in-
creasing temperature. At ∆h = 2 cm and T = 1.5 K a temperature difference
of about 1 mK is found. In principle, one could use the thermomechanical
effect for cooling, but this method is very inefficient.
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Fig. 2.16. Temperature difference as
a function of the level difference in the
two beakers that are connected via a
superleak [59]

2.2.6 Heat Transport

So far we have discussed the mass transport of helium II in thin capillaries
under the assumption that the normal-fluid component is completely blocked.
However, for capillaries with finite width this is only approximately true. In
fact, even in equilibrium (∆p = !S∆T ), there is always a flow of normal-fluid
component !n from the warm to the cold end. The superfluid component !s

moves in the opposite direction. Because of the difference in entropy of the
two components, this counterflow is associated with entropy transport and
thus with the transport of heat. The heat flow is only limited by the viscosity
of the normal-fluid component. We describe the flow of !n within classical
hydrodynamics by

V̇n =
β

ηn

∆p

L
. (2.20)

Here, L denotes the length of the flow channel and β is a constant that is
determined by the geometry of the flow channel. For capillaries the Hagen–
Poiseuille law is valid and thus β ∝ r4. For heat transport through small slits
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This expression corresponds to a Van der Waals adsorption isotherm and
reflects the fact that the thickness of the film can be reduced by lowering the
pressure. Even submonolayers can be produced in this way. In experiments
with very thin films it has been demonstrated that the onset of superfluidity
occurs at about 2.1 monolayers, and that the first layer is solid [57].

A plot of (2.17) is shown in Fig. 2.15. Neglecting gravity, arbitrarily thick
films can, in principle, be produced for pressures p → p0.
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2.2.5 Thermomechanical Effect

The nature of the experiments showing the thermomechanical effect have
been discussed in Sect. 2.1. Two beakers (A and B) filled with helium II
are connected at the bottom via a thin capillary, which acts as a so-called
superleak , which blocks the normal-fluid component and allows the superfluid
component to pass through. Increasing the pressure in A results in a flow of
superfluid component through the superleak to B. Because of this, the ratio
of "s/" in both beakers changes and thus a temperature gradient between A
and B rises. In equilibrium, we can describe the situation by using (2.9)

∂vs

∂t
= S gradT − 1

"
grad p = 0 (2.18)

and obtain
∆p

∆T
= "S . (2.19)
= 1 mK

not very 
effective cooling
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happen, because, unless special care is taken, temperature gradients between
the inside and the outside of the beaker occur, leading to dissipation and thus
to a rapid damping of the oscillation.

2.1.3 Thermomechanical Effect

The thermomechanical effect is another unique property of helium II. A
schematic illustration of an experimental setup to observe this effect is shown
in Fig. 2.6. Two vessels (A and B), both containing helium II are connected
via a very thin capillary. Temperature and pressure are equal in both vessels
at the beginning of the experiment and thus the helium levels in the two
vessels are the same. Increasing the pressure in A results in a flow of helium
towards B. Surprisingly, this causes a difference in temperature in the two
vessels. The temperature in B decreases somewhat, whereas it increases in A.
Equalizing the pressure difference again brings the system back to its starting
condition indicating that this is a reversible process. This experiment clearly
shows that there is mass flow in helium II associated with the heat flow. How-
ever, the fact that the direction of heat flow is actually opposite to the flow
of mass is very peculiar.

B

∆p

T

∆TT −

A

Fig. 2.6. Schematic illustration of the
principle of the thermomechanical effect

The reversal of the experiment discussed above, namely generation of
a pressure difference by heating makes possible the observation of a very
attractive phenomenon, the so-called fountain effect (Fig. 2.7). It was first
observed by Allen and Jones in 1938 in connection with thermal transport
measurements [46]. The fountain effect can be realized by using a flask with
a thin neck immersed in helium at T < Tλ. The lower part of the flask is
filled with a fine compressed powder and is open at the bottom. Above the
powder tablet an electrical heater is located in the flask. Without heating,
the flask fills up with helium until the level of the bath is reached. Heating
the helium in the flask results in a fountain of helium ejected from the top
of the flask due to the thermomechanical effect. Stationary fountains with
heights up to 30 cm have been achieved in this way. Usually, such fountains
show turbulent flow. However, under certain conditions (low heater power,

Using (6) in stationary state
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Heater
Powder

Fig. 2.7. (a) Schematic sketch of an experimental setup used to demonstrate the
fountain effect. The helium inside and outside the flask has been drawn in a slightly
different shade for clarity. (b) Photo of a fountain generated in helium II [47]

low temperatures, etc.) fountains can be produced exhibiting pure potential
flow, like the one shown in Fig. 2.7b.

2.1.4 Heat Transport

Early experiments on heat transport in superfluid 4He indicated that the
thermal conductivity of helium II is more than five orders of magnitude larger
than that of helium I [48,49]. This extremely high thermal conductivity of the
superfluid immediately explains the remarkable observation that the boiling
of liquid helium stops suddenly when passing the lambda transition. The
temperature distribution becomes homogeneous within the liquid and thus
evaporation takes place only at the free surface.

Not only is the heat transport of helium II very high, it also has a num-
ber of other unusual properties. Figure 2.8 shows that under certain cir-
cumstances a pronounced maximum of the heat current density is observed
at about 1.8 K. Using capillaries with large diameters one finds, in addi-
tion, that the heat-current density q̇ rises proportional to |grad T |1/3. This
means, that the thermal transport cannot be described by the usual expres-
sion q̇ = −Λ gradT , because the thermal conductivity Λ would not be con-
stant but would diverge for small temperature gradients as Λ ∝ |gradT |−2/3.

Detailed investigations of the heat flux Q̇ of helium II through very thin
capillaries have shown that for small temperature differences the heat flux

16 2 Superfluid 4He – Helium II

2.1.1 Viscosity and Superfluidity

The first indications for the occurrence of superfluidity came from flow mea-
surements through very thin capillaries and narrow slits [31, 32]. Using the
Hagen–Poiseuille law

V̇ =
πr4

8
1
η

∆p

L
, (2.1)

one can conclude from measurements of the flow velocity in narrow capillaries
that the viscosity of helium II is several orders of magnitude lower than that
of helium I. The quantity L denotes the length of the capillary, r the radius,
∆p the pressure drop along the capillary and V̇ the volume rate of helium
transported through it. Some measurements that demonstrate the typical
variation of flow velocity v = V̇ /(πr2) with pressure are shown in Fig. 2.1a.
Besides the extremely low viscosity, two other very remarkable observations
can be made, namely that the flow velocity is nearly independent of the pres-
sure gradient along the capillary, and that the flow velocity increases with
decreasing diameter of the capillary. The temperature dependence of the vis-
cosity deduced from flow measurements through narrow capillaries is shown
in Fig. 2.1b. Above the lambda point, the viscosity is nearly temperature
independent, but it falls to an undetectably low value for T < Tλ.

An important question in this context is whether the viscosity becomes
extremely small but finite or whether it actually becomes zero below the
lambda transition. To answer this question persistent-mass flows have been
generated and monitored [37,38], analogous to persistent-current experiments
with superconductors (see Chap. 10). A torus, containing compressed fine
powder is filled with liquid helium and set into rotation above the lambda
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Fig. 2.1. (a) Flow velocity of helium II through capillaries with different diameter
as a function of the applied pressure [39, 40]. (b) Temperature dependence of the
viscosity of liquid helium as determined from flow experiments with thin capillaries
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The latter expression was first derived by H. London and thus is often called
the London equation [58]. Figure 2.16 shows experimental values of the tem-
perature difference between the two beakers as a function of the level differ-
ence, which corresponds to a pressure difference.

The data demonstrate nicely the linear relation between ∆p and ∆T pre-
dicted by (2.19). As expected, the thermomechanical effect weakens with in-
creasing temperature. At ∆h = 2 cm and T = 1.5 K a temperature difference
of about 1 mK is found. In principle, one could use the thermomechanical
effect for cooling, but this method is very inefficient.
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2.2.6 Heat Transport

So far we have discussed the mass transport of helium II in thin capillaries
under the assumption that the normal-fluid component is completely blocked.
However, for capillaries with finite width this is only approximately true. In
fact, even in equilibrium (∆p = !S∆T ), there is always a flow of normal-fluid
component !n from the warm to the cold end. The superfluid component !s

moves in the opposite direction. Because of the difference in entropy of the
two components, this counterflow is associated with entropy transport and
thus with the transport of heat. The heat flow is only limited by the viscosity
of the normal-fluid component. We describe the flow of !n within classical
hydrodynamics by

V̇n =
β

ηn

∆p

L
. (2.20)

Here, L denotes the length of the flow channel and β is a constant that is
determined by the geometry of the flow channel. For capillaries the Hagen–
Poiseuille law is valid and thus β ∝ r4. For heat transport through small slits

► heating of helium inside vessel                ratio of                increases inside the vessel
► the temperature inside is higher than outside 
► to equalize the system        flows through superleak (compressed powder)
► pressure rises and fountain starts to flow (and flows as long as heater is on)

Reverse thermomechanical effect: Fountain effect

2.3 Properties of He-II described using 
the two-fluid model
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2.2.3 Determination of !n/!

A schematic drawing of the specially designed torsion oscillator that An-
dronikashvili used in 1948 to determine the normal-fluid density !n is shown
in Fig. 2.12 [55]. The torsion pendulum consisted of 50 equally spaced alu-
minum discs with a diameter of 3.5 cm and a thickness of only 13µm. The
discs were mounted on a rod separated from each other by 210µm. The rod
with the discs was suspended by a torsion fiber forming an oscillator. The
lower part of the oscillator was immersed in liquid helium. In the actual ex-
periment, slow oscillations with a typical period of 30 s were excited and the
resulting deflection amplitude was detected optically via a mirror that was
rigidly attached to the axis of the pendulum.
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Fig. 2.12. Schematic drawing of the appara-
tus used by Andronikashvili to determine the
normal-fluid density !n of helium II

The total mass of the pendulum bob determines its moment of inertia.
The oscillator was driven at the resonant frequency of its torsional mode. This
frequency depends on the ratio of the torsion constant and the moment of
inertia of the pendulum. The discs of the viscosimeter were constructed from
very light material to achieve as large a change as possible in the moment of
inertia for a given change of the entrained mass. The spacing d between the
discs and the period of oscillation were chosen so that the viscous penetration
depth δ =

√
2ηn/!nω was larger than the distance between the aluminum

discs throughout the entire experiment. Therefore, the complete normal-fluid
component !n, but not the superfluid component !s, was dragged with the
discs above and below the lambda point.

In this way, the temperature dependence of !n can be measured directly.
The results of the original measurements by Andronikashvili are shown in
Fig. 2.13. Above Tλ, all the fluid is dragged with the discs and the data
reflect the temperature dependence of the density of helium I. Below Tλ,
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2.3 Properties of He-II described using 
the two-fluid model

d) Heat Transport

► in not too small capillaries        ≠ 0

► even in equilibrium (                       )  there is a constant flow of     
from the warm end to the cold end and      in the opposite direction by “convection” 

2.2 Two-Fluid Model 31

d = 3

√
α m4

kBT (ln p0 − ln p)
. (2.17)

This expression corresponds to a Van der Waals adsorption isotherm and
reflects the fact that the thickness of the film can be reduced by lowering the
pressure. Even submonolayers can be produced in this way. In experiments
with very thin films it has been demonstrated that the onset of superfluidity
occurs at about 2.1 monolayers, and that the first layer is solid [57].

A plot of (2.17) is shown in Fig. 2.15. Neglecting gravity, arbitrarily thick
films can, in principle, be produced for pressures p → p0.
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Fig. 2.15. Thickness of helium films as
a function of pressure according to (2.17)

2.2.5 Thermomechanical Effect

The nature of the experiments showing the thermomechanical effect have
been discussed in Sect. 2.1. Two beakers (A and B) filled with helium II
are connected at the bottom via a thin capillary, which acts as a so-called
superleak , which blocks the normal-fluid component and allows the superfluid
component to pass through. Increasing the pressure in A results in a flow of
superfluid component through the superleak to B. Because of this, the ratio
of "s/" in both beakers changes and thus a temperature gradient between A
and B rises. In equilibrium, we can describe the situation by using (2.9)
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2.2.5 Thermomechanical Effect

The nature of the experiments showing the thermomechanical effect have
been discussed in Sect. 2.1. Two beakers (A and B) filled with helium II
are connected at the bottom via a thin capillary, which acts as a so-called
superleak , which blocks the normal-fluid component and allows the superfluid
component to pass through. Increasing the pressure in A results in a flow of
superfluid component through the superleak to B. Because of this, the ratio
of "s/" in both beakers changes and thus a temperature gradient between A
and B rises. In equilibrium, we can describe the situation by using (2.9)
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2.3 Properties of He-II described using 
the two-fluid model
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2.2 Two-Fluid Model 33

with width d, we have β ∝ d3. The entropy transported is given by V̇n"S.
Under the assumption that the flow of the two components is reversible we
find

Q̇ = T V̇n"S . (2.21)

After inserting this result in (2.20) and using the London equation (2.19) we
eventually obtain:

Q̇ =
βT ("S)2

ηnL
∆T . (2.22)

As expected for the linear regime, the heat flow is proportional to ∆T . Equa-
tion (2.22) also agrees quantitatively with the data very well. An example
of a measurement of the heat transport through slits with different widths
is shown in Fig. 2.17. At all three temperatures one finds Q̇ ∝ β ∝ d3, in
agreement with (2.22).
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Fig. 2.17. Heat flux Q̇/∆T of
helium II at three different tem-
peratures as a function of the slit
width d. The solid lines corre-
spond to a variation of the heat
transport proportional to d3 [51]

2.2.7 Momentum of the Heat Flow

A further remarkable feature of the heat flow in helium II that we have not
discussed yet is the fact that a momentum transport is associated with a
heat current in helium II. This phenomenon was first discovered by Kapitza
in 1941 [60].

The momentum current per unit volume is given by "v ·v. The resulting
pressure acting on a heat source is therefore

p = "nv2
n + "sv

2
s . (2.23)
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