e) Heat Transport

Absolute value of thermal conductivity is extremely high

$$\Lambda_{\rm He-II}$$
 > 10⁶ $\Lambda_{\rm He-I}$ at T ~ 1.8 K

- best condensed matter heat conductor by far
- ▶ explains why no boiling is observed at $T \le T_{\lambda}$ since no temperature gradient

Further unusual properties of the heat transport

heat current density \triangleq heat flow per area

$$d = 0.3 \dots 1.5 \text{ mm}$$

 $L = 2 \dots 40 \text{ cm}$

Maximum at 1.8 K

SS 2022

MVCMP-1

▶ T < 1.8 K, $\dot{q} \sim |\text{grad } T|^{1/3}$

• with $\dot{q} = -\Lambda \operatorname{grad} T$ $\bigwedge \Lambda \propto |\operatorname{grad} T|^{-2/3}$

Heat flow in helium II through a 2.4 μ m wide slit

SS 2022

MVCMP-1

Thermal resistance $\Delta T/\dot{Q}$

 $\dot{\mathbf{p}} \dot{\mathbf{q}} = -\Lambda \operatorname{grad} T$ for very thin capillaries or small values of $\operatorname{grad} T$] linear

linear in ΔT

- low T, small values of ΔT
- ▶ high *T*, large values of ΔT → sublinear in ΔT
- \blacktriangleright critical heat flow \triangleq critical velocity

regime

f) Second Sound

Propagation of temperature waves similar to sound waves

suggested by Kapitza first seen by Peshkov 1944

Seen up to 100 kHz (experimental limit)

• v_2 independent of frequency

In addition: no turbulence associated with $Q_{\rm S} \longrightarrow {\rm rot} \, \boldsymbol{v}_{\rm S} = 0$

density	$arrho=arrho_{ m n}+arrho_{ m s}$	(1)
mass flow	$oldsymbol{j} = arrho_{\mathrm{n}}oldsymbol{v}_{\mathrm{n}} + arrho_{\mathrm{s}}oldsymbol{v}_{\mathrm{s}}$	(2)

continuity eqn. (mass conservation)

$$\frac{\partial \varrho}{\partial t} = -\text{div}\,\boldsymbol{j}$$
 (3)

He-II is ideal fluid $\eta_n < 10^{-5} P \sim 0$

Euler eqn. (Newton's 2nd law of motion for continua) $\frac{\partial j}{\partial t} + \underbrace{\varrho v \cdot \operatorname{grad} v}_{\approx 0} = -\operatorname{grad} p$

for small velocities since quadratic in v (approximation for linear regime)

$$\frac{\partial \boldsymbol{j}}{\partial t} = -\operatorname{grad} \boldsymbol{p} \tag{4}$$

9 $\frac{d\vec{v}}{dt} = -qrad \rho - \rhoressure$ with $\frac{d\vec{v}}{dt} = \frac{2\vec{v}}{2t} + \vec{v} qrad \vec{v} | \frac{dv}{dx} \cdot \frac{dx}{dt}$ $\bigcap S \left(\frac{2\vec{v}}{2t} + \vec{v} qrad \vec{v} \right) = -qrad \rho$ 9 $\frac{2\vec{v}}{2t} + g \vec{v} qrad \vec{v} = -qrad \rho$ with $\vec{J} = g\vec{v}$ $\bigwedge \frac{2\vec{v}}{2t} + g \vec{v} qrad \vec{v} = -qrad \rho$

idea: Superfluid component is added at "constant" volume in the system

Consider change of internal energy

Navier-Stokes equation for normalfluid component

Navier-Stokes equation for superfluid component

$$\rho_{\rm s} \frac{\mathrm{d}v_{\rm s}}{\mathrm{d}t} = -\frac{\rho_{\rm s}}{\rho} \operatorname{grad} p - \rho_{\rm s} S \operatorname{grad} T - \frac{\rho_{\rm s} \rho_{\rm n}}{2\rho} \operatorname{grad} \left(\boldsymbol{v}_{\rm n} - \boldsymbol{v}_{\rm s}\right)^2 + \eta_{\rm s} \nabla^2 \boldsymbol{v}_{\rm s}$$
Fuler-type equation for superfluid

Equalion for Supernula

SS 2022

MVCMP-1

if vorticity is included - Gross-Pitaevskii equation

Two-Fluid Hydrodynamics

(1)

(2)

(3)

(4)

density $\varrho = \varrho_{\rm n} + \varrho_{\rm s}$ $\boldsymbol{j} = \varrho_{\mathrm{n}} \boldsymbol{v}_{\mathrm{n}} + \varrho_{\mathrm{s}} \boldsymbol{v}_{\mathrm{s}}$ mass flow $\frac{\partial \varrho}{\partial t} = -\text{div}\,\boldsymbol{j}$ mass conservation continuity eqn. $\frac{\partial \boldsymbol{j}}{\partial t} = -\text{grad}\,p$

ideal fluid

entropy conservation

$$rac{\partial(\varrho S)}{\partial t} = -\mathrm{div}(\varrho S \boldsymbol{v}_{\mathrm{n}})$$
 (5)

an equation of motion for superfluid component

$$\frac{\partial \boldsymbol{v}_{\mathrm{s}}}{\partial t} = S \operatorname{grad} T - \frac{1}{\varrho} \operatorname{grad} p$$
 (6)

a) Viscosity

Temperature T / K

2.3 Properties of He-II described using the two-fluid model

a) Viscosity

(ii) rotary viscosimeter

Torque acting on stationary cylinder is measured

$$M_\mathrm{r} = \pi \eta \omega d_\mathrm{r}^2 d_\mathrm{s}^2 / (d_\mathrm{s}^2 - d_\mathrm{r}^2)$$

since $\,\eta_{
m s}=0\,$ no torque resulting from $arrho_{
m s}$

$$M_{\rm r} \propto \eta = \eta_{\rm n}$$

$$1$$
two-fluid model

Temperature dependence

 $\eta_{
m n} \propto \ell_{
m n}$

$$\eta_{
m n}\left(T
ight)$$
 at very low temperatures T < 1.8 K ?

mean free path increases with decreasing temperature because thermal excitations disappear

Viscosity $\eta = \frac{1}{3} \varrho v \ell$

(iii) oscillating disc

SS 2022

MVCMP-1

Torque acting on the disc:

$$\begin{split} M_{\rm d} &= \pi \sqrt{\varrho \eta} \, \omega^{3/2} r^4 \, \Theta(\omega) \\ & & \\ \Theta(\omega) &= \Theta_0 \cos(\omega t - \pi/4) \\ M_{\rm d} &\propto \sqrt{\varrho \eta} \, \end{split}$$

 $^\circ$ product is important for $M_{
m d}$

 $\mathcal{T} < \mathcal{T}_{\lambda} \implies \eta_{\mathrm{s}} = 0 \implies \eta_{\mathrm{n}} \varrho_{\mathrm{n}}$ is measured

for $T \rightarrow 0 \implies \varrho_n \rightarrow 0 \implies \varrho_n \eta_n \rightarrow 0$

